Surface Morphology Dynamics in ITO Thin Films


In this study, indium tin oxide (ITO) thin films were prepared by electron beam evaporation method on float glass substrates at room temperature (RT). The surface morphology and dynamic scaling behavior of the films were studied by atomic force microscopy (AFM). It was found that average surface roughness values decreased as the film thickness increased from 100 nm to 350 nm. Fractal geometry and statistical physics techniques have been used to study a variety of irregular films within a common framework of the variance thickness. The Hurst exponent H and growth exponent ? for ITO thin films were determined to be 0.73 ? 0.01 and 0.078, respectively. Based on these results, we suggest that the growth of ITO thin films can be described by the combination of the Edwards-Wilkinson equation and Mullins diffusion equation.

Share and Cite:

D. Raoufi and F. Hosseinpanahi, "Surface Morphology Dynamics in ITO Thin Films," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 645-651. doi: 10.4236/jmp.2012.38088.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi and D. B. Chrisey, “Indium Tin Oxide Thin Films for Organic Light-Emitting Devices,” Applied Phy- sics Letters, Vol. 74, No. 23, 1999, pp. 3444-3446. doi:10.1063/1.124122
[2] I. Hamberg and C. G. Granqvist, “Evaporated Sn-Doped In2O3 Films: Basic Properties and Applications to Energy Efficient Windows,” Journal of Applied Physics, Vol. 60, No. 11, 1986, pp. R123-R159. doi:10.1063/1.337534
[3] D. Raoufi, A. Kiasatpour, H. R. Fallah and A. S. H. Rozatian, “Surface Characterization and Microstructure of ITO Thin Films at Different Annealing Temperatures,” Applied Surface Science, Vol. 253, No. 23, 2007, pp. 9085-9090. doi:10.1016/j.apsusc.2007.05.032
[4] D. Vaufrey, M. Ben Khalifa, J. Tardy, C. Ghica, M. G. Blanchin, C. Sandu and J. A. Roger, “ITO-on-Top Org- anic Light-Emitting Devices: A Correlated Study of Opto- Electronic and Structural Characteristics,” Semiconductor Science and Technology, Vol. 18, No. 4, 2003, pp. 253- 260. doi:10.1088/0268-1242/18/4/310
[5] S. H. Shin, J. H. Shin, K. J. Park, T. Ishida, O. Tabata and H. H. Kim, “Low Resistivity Indium Tin Oxide Films Deposited by Unbalanced DC Magnetron Sputtering,” Thin Solid Films, Vol. 341, No. 1-2, 1999, pp. 225-229. doi:10.1016/S0040-6090(98)01531-4
[6] D. Kim, Y. Han, J. S. Cho and S. K. Koh, “Low Temperature Deposition of ITO Thin Films by Ion Beam Sputtering,” Thin Solid Films, Vol. 377-378, 2000, pp. 81-86. doi:10.1016/S0040-6090(00)01388-2
[7] D. C. Paine, T. Whitson, D. Janiac, R. Beresford and O. Y. Cleva, “A Study of Low Temperature. Crystallization of Amorphous Thin Film Indium-Tin-Oxide,” Journal of Applied Physics, Vol. 85, No. 12, 1999, pp. 8445-8450. doi:10.1063/1.370695
[8] T.-K. Yong, et al., “Pulsed Laser Deposition of Indium Tin Oxide Nanowires in Argon and Helium,” Materials Letters, Vol. 66, No. 1, 2012, pp. 280-281. doi:10.1016/j.matlet.2011.08.085
[9] E. Benamar, M. Rami, C. Messaoudi, D. Sayah and A. Ennaoui, “Structural, Optical and Electrical Properties of Indium Tin Oxide Thin Films Prepared by Spray Pyroly- sis,” Solar Energy Materials and Solar Cells, Vol. 56, No. 2, 1999, pp. 125-139. doi:10.1016/S0927-0248(98)00151-2
[10] K. Maki, N. Komiya and A. Suzuki, “Fabrication of Thin Films of ITO by Aerosol CVD,” Thin Solid Films, Vol. 445, No. 2, 2003, pp. 224-228. doi:10.1016/j.tsf.2003.08.021
[11] A. Arnéodo, N. Decoster and S. G. Roux, “A Wavelet- Based Method for Multifractal Image Analysis: I. Metho- dology and Test Applications on Isotropic and Anisot- ropic Random Rough Surfaces,” The European Physical Journal B, Vol. 15, No. 3, 2000, pp. 567-600. doi:10.1007/s100510051161
[12] P. Meakin, “Fractal, Scaling and Growth Far from Equi- librium,” Cambridge University Press, London, 1998.
[13] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freemen Press, San Francisco, 1982.
[14] J. Russ, “Fractal Surfaces,” Plenum Press, New York and London, 1994.
[15] G. Binnig, C. F. Quate and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, Vol. 56, No. 9, 1986, pp. 930-933. doi:10.1103/PhysRevLett.56.930
[16] A. A. Suleymanov, A. A. Abbasov and A. J. Ismaylov, “Fractal Analysis of Time Series in Oil and Gas Produc- tion,” Chaos, Solitons and Fractals, Vol. 41, No. 5, 2009, pp. 2474-2483. doi:10.1016/j.chaos.2008.09.039
[17] J. Alvarez-Ramirez, J. C. Echeverria and E. Rodriguez, “Performance of a High-Dimensional R/S Method for Hurst Exponent Estimation,” Physica A, Vol. 387, No. 26, 2008, pp. 6452-6462. doi:10.1016/j.physa.2008.08.014
[18] X.-A. Yin, X.-H Yang and Z.-F Yang, “Using the R/S Method to Determine the Periodicity of Time Series,” Chaos, Solitons and Fractals, Vol. 39, No. 2, 2009, pp. 731-745. doi:10.1016/j.chaos.2007.01.085
[19] A. W. Lo, “Long-Term Memory in Stock Market Prices,” Econometrica, Vol. 59, No. 5, 1991, pp. 1279-1313. doi:10.2307/2938368
[20] Reference Manual for Nanoscope III, Digital Instrument, Santa Barbara, 1996.
[21] J. D. Kiely and D. A. Bonnell, “Quantification of Topog- raphic Structure by Scanning Probe Microscopy,” Journal of Vacuum Science & Technology B, Vol. 15, No. 4, 1997, pp. 1483-1493. doi:10.1116/1.589480
[22] Y. Shigesato, R. Koshi-ishi, T. Kawashima and J. Ohsako, “Early Stages of ITO Deposition on Glass or Polymer Substrates,” Vacuum, Vol. 59, No. 2-3, 2000, pp. 614-621. doi:10.1016/S0042-207X(00)00324-9
[23] R. Buzio, E. Gnecco, C. Boragno, U. Valbusa, P. Piseri, E. Barborini and P. Milani, “Self-Affine Properties of Clus- ter-Assembled Carbon Thin Films,” Surface Science, Vol. 444, No. 1-3, 2000, pp. L1-L6. doi:10.1016/S0039-6028(99)01066-3
[24] J. C. Arnault, A. Knoll, E. Smigiel and A. Cornet, “Roughness Fractal Approach of Oxidised Surfaces by AFM and Diffuse X-Ray Reflectometry Measurements,” Applied Surface Science, Vol. 171, No. 3-4, 2001, pp. 189-196. doi:10.1016/S0169-4332(00)00550-X
[25] J. M. Li, L. Lu, Y. Su and M.O. Lai, “Self-Affine Nature of Thin Film Surface,” Applied Surface Science, Vol. 161, No. 1-2, 2000, pp. 187-193. doi:10.1016/S0169-4332(00)00297-X
[26] H. E. Hurst, R. P. Black and Y. M. Simaika, “Long-Term Storage: An Experimental Study,” Constable, London, 1965.
[27] E. E. Peters, “Fractal Market Analysis,” Wiley, New York, 1991.
[28] N. Kannathal, U. Rajendra Acharya, C. M. Lim and P .K. Sadasivan, “Characterization of EEG-A Comparative Study,” Computer Methods and Programs in Biomedicine, Vol. 80, No. 1, 2005, pp. 17-23. doi:10.1016/j.cmpb.2005.06.005
[29] J. Feder, “Fractals,” Plenum Press, New York, 1988.
[30] M. Saitou, W. Oshikawa and A. Makabe, “Characterization of Electrodeposited Nickel Film Surfaces Using Atomic Force Microscopy,” Journal of Physics and Che- mistry of Solids, Vol. 63, No. 9, 2002, pp. 1685-1689. doi:10.1016/S0022-3697(01)00254-2
[31] P. Norouzzadeh and G. R. Jafari, “Application of Multi- fractal Measures to Tehran Price Index,” Physica A, Vol. 356, No. 2-4, 2005, pp. 609-627. doi:10.1016/j.physa.2005.02.046
[32] R. Buzio, E. Gnecco, C. Boragno, U. Valbusa, P. Piseri, E. Barborini and P. Milani, “A Molecular-Beam Study of Methane Dissociative Adsorption on Oxygen-Precovered Pt{110}(1 × 2),” Surface Science, Vol. 444, No. 1-3, 2000, 1-6. doi:10.1016/S0039-6028(99)01048-1
[33] Y. Zhao, G. Ching, T. Wang and M. Lu, “Characteriza- tion of Amorphous and Crystalline Rough Surface: Prin- ciple and Applications,” Academic Press, New York, 2001.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.