Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma

DOI: 10.4236/jmp.2012.38111   PDF   HTML   XML   3,718 Downloads   6,237 Views   Citations

Abstract

The nonlinear propagation of waves (specially solitary waves) in an ultra-relativistic degenerate dense plasma (containing ultra-relativistic degenerate electrons and positrons, cold, mobile, inertial ions, and negatively charged static dust) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de-Vries equation have been derived whose numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The existence of solitary structures has been also verified by employing the pseudo-potential method. The implications of our results in astrophysical compact objects have been briefly discussed.

Share and Cite:

N. Roy, M. Zobaer and A. Mamun, "Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 850-855. doi: 10.4236/jmp.2012.38111.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Chandrasekhar, “The Density of White Dwarf Stars,” Philosophical Magazine, Vol. 11, No. 7, 1931, pp. 592- 596.
[2] S. Chandrasekhar, “The Maximum Mass of Ideal White Dwarfs,” Astrophysical Journal, Vol. 74, No. 1, 1931, pp. 81-82. doi:10.1086/143324
[3] S. Chandrasekhar, “The Highly Collapsed Configurations of a Steller Mass (Second Paper),” Monthly Notics of the Royal Astronmical Science, Vol. 170, No. 1935, 1935, pp. 226-228.
[4] D. Koester and G. Chanmugam, “Physics of White Dwarf Stars,” Report on Progress in Physics, Vol. 53, No. 7, 1990, p. 837. doi:10.1088/0034-4885/53/7/001
[5] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact - bjects,” John Wiley and Sons, New York, 1983.
[6] E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Lorén-Aguiltar, A. H. Córsico R. D. Rohrmann, M. Salaris, and J. Isern, “A White Dwarf Cooling Age of 8 Gyr for NGC 6791 from Physical Separation Process,” Nature, Vol. 465, 2010, pp. 194-196. doi:10.1038/nature09045
[7] G. Brodin and M. Marklund, “Spin Megnetohydrodynamics,” New Journal of Physics, Vol. 9, No. 8, 2007, pp. 227. doi:10.1088/1367-2630/9/8/277
[8] P. K. Shukla and B. Eliasson, “Formation and Dynamics of Dark Solitons and Vortices in Quantum ElectrPlas- mas,” Physics Review Letter, Vol. 96, No. 24, 2006, Article ID: 245001. doi:10.1103/PhysRevLett.96.245001
[9] P. K. Shukla and B. Eliasson, “Nonlinear Interactions between Electromagnetic Waves and Electron Plasma Os- cillations in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 9, 2007, Article ID: 096401. doi:10.1103/PhysRevLett.99.096401
[10] D. Shaikh and P. K.Shukla, “Fluid Turbulance in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 12, 2007, Article ID: 125002. doi:10.1103/PhysRevLett.99.125002
[11] M. Marklund and G. Brodin, “Dynamics of Spin-1/2 Quantum Plasmas,” Physics Review Letter, Vol. 98, No. 2, 2007, Article ID: 025001. doi:10.1103/PhysRevLett.98.025001
[12] P. K. Shukla, “A New Spin in Quantum Plasmas,” Nature Physics, Vol. 5, 2009, pp. 92-93. doi:10.1038/nphys1194
[13] W. Masood, B. Eiasson and P. K. Shukla, “Electromag- netic Wave Equations for Relativistically Degenerate Quan- tum Magnetoplasmas,” Physics Review E, Vol. 81, No. 6, 2010, Article ID: 066401. doi:10.1103/PhysRevE.81.066401
[14] G. Brodin and M. Marklund, “Spin Solitons in Magneized Pair Plasmas, Physics of Plasmas, Vol. 14, No. 11, 2007, Article ID: 112107. doi:10.1063/1.2793744
[15] M. Marklund, B. Eiasson and P. K. Shukla, “Magnetosonic Solitons in a Fermionic Quantum Plasma,” Phys- ics Review E, Vol. 76, No. 6, 2007, Article ID: 067401. doi:10.1103/PhysRevE.76.067401
[16] G. Manfredi, “How to Model Quantum Plasmas,” Proceedings of the Workshop on Kinetic Theory The Fields Institute Communications Series, Toronto, 29 March-2 April 2004, p. 263.
[17] F. Hass, “Variational Approach for the Quantum Zakharov System,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID: 042309. doi:10.1063/1.2722271
[18] A. Misra and S. Samanta, “Quantum Electro Acoustic Double Layers in a Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID: 122307. doi:10.1063/1.3040014
[19] A. P. Misra, S. Banerjee, F. Haas, P. K. Shukla and L. PG. Assis, “Temporal Dynamics in Quantum Zakharov Equa- tions for Plasmas,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID: 032307. doi:10.1063/1.3356059
[20] S. Maxon and J. Viecelli, “Spherical Solitons,” Physics Review Letter, Vol. 32, No. 1, 1974, pp. 4-6. doi:10.1103/PhysRevLett.32.4
[21] I. B. Bernstein, J. M. Greene and M. D. Kruskal, “Exact Nonlinear Plasma Oscillations,” Physics Review Letter, Vol. 108, No. 3, 1957, p. 546.
[22] R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas,” Reviews of Plasma Physics, Vol. 4, 1966, p. 23
[23] A. A. Mamun and P. K. Shukla, “Arbitrary Amplitude Solitary Waves and Double Layers in an Ultra-Relativistic Degenerate Dense Dusty Plasma,” Physics Letter A, Vol. 374, No. 41, 2010, pp. 4238-4241. doi:10.1016/j.physleta.2010.08.038

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.