Shift in microhabitat use as a mechanism allowing the coexistence of victim and killer carnivore predators

Abstract

It has been suggested that spatial heterogeneity is key to the coexistence at local spatial scales of subordinate and dominant predator species by allowing the former to shift to more protective habitats when the risk of intraguild predation exists. Here, we show how the smaller carnivore Egyptian mongoose (Herpestes ichneumon) may coexist on a local scale with its intraguild pre- dator, the Iberian lynx (Lynx pardinus), by using places with different microhabitat character- istics. We expect that mongooses living within lynx home ranges will use denser and more protective habitats when active in order to di- minish their risk of being killed by lynx com- pared to those living in areas similar in vege- tation and prey availability but where lynx are absent. The scrubland cover of points used by mongooses outside lynx areas, and that of points located within lynx areas but not used by mongooses, were significantly lower than, or similar to, cover of points used by mongooses within lynx areas. The probability of finding mon- goose tracks was constant across levels of scrubland cover when lynx were absent, but more mongoose tracks were likely to be found in thicker scrubland within lynx areas, especially if these areas were intensively used by lynx. This result agrees with the hypothesis on shifts in microhabitat use of subordinate carnivores to prevent fatal or risky encounters with dominant ones.

Share and Cite:

Viota, M. , Rodríguez, A. , López-Bao, J. and Palomares, F. (2012) Shift in microhabitat use as a mechanism allowing the coexistence of victim and killer carnivore predators. Open Journal of Ecology, 2, 115-120. doi: 10.4236/oje.2012.23014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Polis, G.A. and Holt, R.D. (1992) Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution, 7, 151-154. doi:10.1016/0169-5347(92)90208-S
[2] Caro, T.M. and Stoner, C.J. (2003) The potential for interspecific competition among African carnivores. Biological Conservation, 110, 67-75. doi:10.1016/S0006-3207(02)00177-5
[3] Sih, A., et al. (1985) Predation, competition, and prey communities: A review of field experiments. Annual Review of Ecology, Evolution and Systematics, 16, 269-311. doi:10.1146/annurev.es.16.110185.001413
[4] Palomares, F. and Caro, T.M. (1999) Interspecific killing among mammalian carnivores. The American Naturalist, 153, 492-508. doi:10.1086/303189
[5] Donadio, E. and Buskirk, S.W. (2006) Diet, morphology, and interspecific killing in carnivora. The American Naturalist, 167, 524-536. doi:10.1086/501033
[6] Sergio, F. and Hiraldo, F. (2008) Intraguild predation in raptor assemblages: A review. Ibis, 150, 132-145. doi:10.1111/j.1474-919X.2008.00786.x
[7] Polis, G.A., Myers, C.A. and Holt, R.D. (1989) The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology, Evolution and Systematics, 20, 297-330. doi:10.1146/annurev.es.20.110189.001501
[8] Lima, S.L. and Hill, L.M. (1990) Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619-640. doi:10.1139/z90-092
[9] Lima, S.L. (1998) Nonlethal effects in the ecology of predator-prey interactions: What are the ecological effects of anti-predator decision-making? Bioscience, 48, 25-34. doi:10.2307/1313225
[10] Levin, S.A. (1974) Dispersion and population interactions. The American Naturalist, 108, 207-228. doi:10.1086/282900
[11] Hastings, A. (1980) Disturbance, coexistence, history, and competition for space. Theoretical Population Biology, 18, 363-373. doi:10.1016/0040-5809(80)90059-3
[12] Chesson, P.L. (1985) Coexistence of competitors in spatially and temporally varying environments—A look at the combined effects of different sorts of variability. Theoretical Population Biology, 28, 263-287. doi:10.1016/0040-5809(85)90030-9
[13] Durant, S.M. (2000) Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti. Behavioral Ecology, 11, 624-632. doi:10.1093/beheco/11.6.624
[14] Nelson, J.L., Cypher, B.L., Bjurlin, C.D. and Creel, S. (2007) Effects of habitat on competition between kit foxes and coyotes. Journal of Wildlife Management, 71, 1467-1475. doi:10.2193/2006-234
[15] Palomares, F., Ferreras, P., Fedriani, J.M. and Delibes, M. (1996) Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain. Journal of Applied Ecology, 33, 5-13. doi:10.2307/2405010
[16] Langellotto, G.A. and Denno, R.F. (2004) Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia, 139, 1-10. doi:10.1007/s00442-004-1497-3
[17] Sergio, F., Marchesi, L., Pedrini, P. and Penteriani, V. (2007) Coexistence of a generalist owl with its intraguild predator: Distance-sensitive or habitat-mediated avoidance? Animal Behaviour, 74, 1607-1616. doi:10.1016/j.anbehav.2006.10.022
[18] Thompson, C.M. and Gese, E.M. (2007) Food webs and intraguild predation: Community interactions of a native mesocarnivore. Ecology, 88, 334-346. doi:10.1890/0012-9658(2007)88[334:FWAIPC]2.0.CO;2
[19] Van Etten, K.W., Wilson, K.R. and Crabtree, R.L. (2007) Habitat use of red foxes in Yellowstone National Park based on snow tracking and telemetry. Journal of Mammalogy, 88, 1498-1507. doi:10.1644/07-MAMM-A-076.1
[20] Durant, S.M. (1998) Competition refuges and coexistence: An example from Serengeti carnivores. Journal of Animal Ecology, 67, 370-386. doi:10.1046/j.1365-2656.1998.00202.x
[21] Sargeant, A.B., Allen, S.H. and Hastings, J.O. (1987) Spatial relationships between sympatric coyotes and red foxes in North-Dakota. Journal of Wildlife Management, 51, 285-293. doi:10.2307/3801004
[22] Harrison, D.J., Bissonette, J.A. and Sherburne, J.A. (1989) Spatial relationships between coyotes and red foxes in Eastern Maine. Journal of Wildlife Management, 53, 181185. doi:10.2307/3801327
[23] Theberge, J.B. and Wedeles, C.H.R. (1989) Prey selection and habitat partitioning in sympatric coyote and red fox populations, southwest Yukon. Canadian Journal of Zoology, 67, 1285-1290. doi:10.1139/z89-183
[24] Fedriani, J.M., Palomares, F. and Delibes, M. (1999) Niche relations among three sympatric Mediterranean carnivores. Oecologia, 121, 138-148. doi:10.1007/s004420050915
[25] Bonesi, L. and Macdonald, D.W. (2004) Differential habitat use promotes sustainable coexistence between the specialist otter and the generalist mink. Oikos, 106, 509519. doi:10.1111/j.0030-1299.2004.13034.x
[26] Palomares, F., Ferreras, P., Travaini, A. and Delibes, M. (1998) Co-existence between Iberian lynx and Egyptian mongooses: Estimating interaction strength by structural equation modelling and testing by an observational study. Journal of Animal Ecology, 67, 967-978. doi:10.1046/j.1365-2656.1998.6760967.x
[27] Palomares, F. and Delibes, M. (1990) Habitat preference of large gray mongooses Herpestes ichneumon in Spain. Acta Theriologica, 35, 1-6.
[28] Palomares, F. and Delibes, M. (1993) Key habitats for Egyptian mongooses in Donana-National-Park, SouthWestern Spain. Journal of Applied Ecology, 30, 752-758. doi:10.2307/2404253
[29] Palomares, F., et al. (2000) Iberian lynx in a fragmented landscape: Predispersal, dispersal, and postdispersal habitats. Conservation Biology, 14, 809-818. doi:10.1046/j.1523-1739.2000.98539.x
[30] Delibes, M. (1980) Feeding ecology of the Spanish Lynx in the Coto Do?ana. Acta Theriologica, 25, 309-324.
[31] Palomares, F. (1993) Opportunistic feeding of the Egyptian Mongoose, Herpestes (L.) in Southwestern Spain. La Terre et la Vie-Revue d’Ecologie, 48, 295-304.
[32] Allier, C.F., González Bernáldez, F. and Ramírez Díaz, L. (1974) Mapa Ecológico de la Reserva Biológica de Do?ana. División de Ciencias del CSIC. Estación Biológica de Do?ana, Sevilla.
[33] López-Bao, J.V., Rodríguez, A. and Palomares, F. (2008) Behavioural response of a trophic specialist, the Iberian lynx, to supplementary food: Patterns of food use and implications for conservation. Biological Conservation, 141, 1857-1867. doi:10.1016/j.biocon.2008.05.002
[34] López-Bao, J.V., Rodriguez, A. and Palomares, F. (2009) Competitive asymmetries in the use of supplementary food by the endangered Iberian lynx (Lynx pardinus). PloS ONE, 4, e7610. doi:10.1371/journal.pone.0007610
[35] López-Bao, J.V., Palomares, F., Rodríguez, A. and Delibes, M. (2010) Effects of food supplementation on home range size, productivity and recruitment in a small population of Iberian lynx. Animal Conservation, 13, 3542. doi:10.1111/j.1469-1795.2009.00300.x
[36] López-Bao, J.V., Palomares, F., Rodríguez, A. and Ferreras, P. (2011) Intraspecific interference influences the use of prey hotspots. Oikos, 120, 1489-1496. doi:10.1111/j.1600-0706.2011.19194.x
[37] Hooge, P.N. and Eichenlaub, B. (1997) Movement. Animal movement extension to ArcView. Version 2.04, Alaska Biological Science Center US Geological Survey, Anchorage.
[38] R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
[39] Trewby, L.D., et al. (2008) Experimental evidence of competitive release in sympatric carnivores. Biological Letters, 4, 170-172. doi:10.1098/rsbl.2007.0516
[40] Salo, P., Nordstrom, M., Thomson, R.L. and Korpimaki, E. (2008) Risk induced by a native top predator reduces alien mink movements. Journal of Animal Ecology, 77, 1092-1098. doi:10.1111/j.1365-2656.2008.01430.x
[41] Hayward, M.W. and Slotow, R. (2009) Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. South African Journal of Wildlife Research, 39, 109-125.
[42] Fedriani, J.M., Fuller, T.K., Sauvajot, R.M. and York, E.C. (2000) Competition and intraguild predation among three sympatric carnivores. Oecologia, 125, 258-270. doi:10.1007/s004420000448
[43] Palomares, F. and Delibes, M. (1993) Social organization in the Egyptian mongoose: Group size, spatial behaviour and inter-individual contacts in adults. Animal Behaviour, 45, 917-925. doi:10.1006/anbe.1993.1111
[44] Palomares, F. (1994) Site fidelity and effects of bodymass on home-range size of Egyptian mongooses. Canadian Journal of Zoology, 72, 465-469. doi:10.1139/z94-065
[45] Palomares, F. (2001) Vegetation structure and prey abundance requirements of the Iberian lynx: Implications for the design of reserves and corridors. Journal of Applied Ecology, 38, 9-18. doi:10.1046/j.1365-2664.2001.00565.x
[46] Rosenheim, J.A. (2004) Top predators constrain the habitat selection games played by intermediate predators and their prey. Israel Journal of Zoology, 50, 129-138. doi:10.1560/K796-DMB2-546Q-Y4AQ
[47] Heithaus, M.R., et al. (2007) State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. Journal of Animal Ecology, 76, 837-844. doi:10.1111/j.1365-2656.2007.01260.x
[48] Finke, D.L. and Denno, R.F. (2002) Intraguild predation diminished in complex-structured vegetation: Implications for prey suppression. Ecology, 83, 643-652. doi:10.1890/0012-9658(2002)083[0643:IPDICS]2.0.CO;2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.