Repeated Exposure to Cruciferous Allyl Nitrile Protects against Chemically Induced Skin Inflammation in the Mouse


Repeated exposure to cruciferous allyl nitrile can induce antioxidant and phase 2 detoxification enzymes in various tissues. In the present study, we examined the effect of five days repeated exposure to allyl nitrile at subtoxic levels (0 - 400 μmol/kg/day) on the mouse ear. There was an increase in catalase activity in the ear at 100 - 400 μmol/kg/day, while elevated quinone reductase activity was observed at 400 μmol/kg/day only. Next, after repeated allyl nitrile exposure (0 - 400 μmol/kg/day), the skin irritant croton oil was applied to the ear to induce skin acute inflammation (oedema). Compared with the 0 μmol/kg/day group, animals in the 100 and 400 μmol/kg/day pre-treatment groups showed reduced oedematous response to croton oil. The reduced oedematous response was inversely associated with enhanced myeloperoxidase activity used as index of the presence of neutrophils. These data suggest that repeated exposure to allyl nitrile at subtoxic levels contributes to protection against croton oil-induced ear dermatitis, potentially through decreasing reactive oxygen species and through infiltration of neutrophils.

Share and Cite:

H. Tanii, T. Higashi, M. Demura and K. Saijoh, "Repeated Exposure to Cruciferous Allyl Nitrile Protects against Chemically Induced Skin Inflammation in the Mouse," Food and Nutrition Sciences, Vol. 3 No. 8, 2012, pp. 1037-1042. doi: 10.4236/fns.2012.38137.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. W. Fahey, A. T. Zelcmann and P. Talalay, “The Chemical Diversity and Distribution of Glucosinolates and Isothiocyanates among Plants,” Phytochemistry, Vol. 56, No. 1, 2001, pp. 5-51. doi:10.1016/S0031-9422(00)00316-2
[2] G. R. Fenwick, R. K. Heaney and W. J. Mullin, “Glucosinolates and Their Breakdown Products in Food and Food Plants,” CRC Critical Reviews in Food Science and Nutrition, Vol.18, No. 2, 1983, pp. 123-201. doi:10.1080/10408398209527361
[3] J. W. Lampe and S. Peterson, “Brassica, Biotransformation and Cancer Risk: Genetic Polymorphism Alter the Preventive Effects of Cruciferous Vegetables,” The Journal of Nutrition, Vol. 132, No. 10, 2002, pp. 2991-2994.
[4] M. Tolonen, M. Taipale, B. Viander, J. M. Pihlava, H. Korhoren and E. L. Ryhanen, “Plant-Derived Biomolecules in Fermented Cabbage,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 23, 2002, pp. 6798-6803. doi:10.1021/jf0109017
[5] L. G. West, A. F. Brandenhop and J. L. McLaughlin, “Allyl Isothiocyanate and Allyl Cyanide Production in Cell-FreeCabbage Leaf Extracts, Shredded Cabbage, and Cole Slaw,” Journal of Agricultural and Food Chemistry, Vol. 25, No. 6, 1977, pp. 1234-1238. doi:10.1021/jf60214a043
[6] H. Tanii, T. Takayasu, T. Higashi, S. Leng and K. Saijoh, “Allylnitrile: Generation from Cruciferous Vegetables and Behavioral Effects on Mice of Repeated Exposure,” Food and Chemical Toxicology, Vol. 42, No. 3, 2004, pp. 453-458. doi:10.1016/j.fct.2003.10.007
[7] D. L. Cheng, K. Hashimoto and Y. Uda, “In Vitro Digestion of Sinigrin and Glucotropaeolin by Single Strains of Bifidobacterium and Identification of the Digestive Products,” Food and Chemical Toxicology, Vol. 42, No. 3, 2004, pp. 351-357. doi:10.1016/j.fct.2003.09.008
[8] H. Tanii, Y. Kurosaka, M. Hayashi and K. Hashimoto, “Allylnitrile: A Compound Which Induces Long-Term Dyskinesia in Mice Following a Single Administration,” Experimental Neurology, Vol. 103, No. 1, 1989, pp. 64- 67. doi:10.1016/0014-4886(89)90186-6
[9] X. P. Zang, H. Tanii, K. Kobayashi, T. Higashi, R. Oka, Y. Koshino and K. Saijoh, “Behavioral Abnormalities and Apoptotic Changes in Neurons in Mice Brain following a Single Administration of Allylnitrile,” Archives of Toxicology, Vol. 73, No. 1, 1999, pp. 22-32. doi:10.1007/s002040050582
[10] H. Tanii, X. P. Zang, N. Saito and K. Saijoh, “Involvement of GABA Neurons in Allylnitrile-Induced Dyskinesia,” Brain Research, Vol. 887, No. 2, 2000, pp. 454-459. doi:10.1016/S0006-8993(00)03035-3
[11] E. Balbuena and J. Llorens, “Behavioural Disturbances and Sensory Pathology Following Allylnitrile Exposure in Rats,” Brain Research, Vol. 904, No. 2, 2001, pp. 298- 306. doi:10.1016/S0006-8993(01)02476-3
[12] H. Tanii, T. Higashi, F. Nishimura, Y. Higuchi and K. Saijoh, “Induction of Detoxication Enzymes in Mice by Naturally Occurring Allyl Nitrile,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 23, 2005, pp. 8993-8996. doi:10.1021/jf0516282
[13] H. Tanii, T. Higashi, F. Nishimura, Y. Higuchi and K. Saijoh, “Effects of Cruciferous Allyl Nitrile on Phase 2 Antioxidant and Detoxification Enzymes,” Medical Science Monitor, Vol. 14, No. 10, 2008, pp. BR189-BR192.
[14] H. Tanii, T. Higashi and K. Saijoh, “Preconditioning with Subneurotoxic Allyl Nitrile: Protection against Allyl Nitrile Neurotoxicity,” Food and Chemical Toxicology, Vol. 48, No. 2, 2010, pp. 750-754. doi:10.1016/j.fct.2009.12.010
[15] S. Graham, H. Dayal, M. Swanson, A. Mittelman and G. Wilkinson, “Diet in the Epidemiology of Cancer of the Colon and Rectum,” Journal of the National Cancer Institute, Vol. 61, No. 3, 1978, pp. 709-714.
[16] W. Haenszel, F. B. Locke and M. Segi, “A Case-Control Study of Large Bowel Cancer in Japan,” Journal of the National Cancer Institute, Vol. 64, No. 1, 1980, pp. 17-22.
[17] T. K. Lam, L. Gallicchio, K. Lindsley, M. Shiels, E. Hammond, X. Tao, L. Chen, K. A. Robinson, L. E. Caulfield, J. G. Herman, E. Guallar and A. J. Alberg, “Cruciferous Vegetable Consumption and Lung Cancer Risk: A Systematic Review,” Cancer Epidemiology Biomarkers & Prevention, Vol. 18, No. 1, 2009, pp. 184-195. doi:10.1158/1055-9965.EPI-08-0710
[18] L. Tang, G. R. Zirpoli, K. Guru, K. B. Moysich, Y. Zhang, C. B. Ambrosone and S. E. McCann, “Consumption of Raw Cruciferous Vegetables Is Inversely Associated with Bladder Cancer Risk,” Cancer Epidemiology Biomarkers & Prevention, Vol. 17, No. 4, 2008, pp. 938-944. doi:10.1158/1055-9965.EPI-07-2502
[19] D. T. Verhoeven, R. A. Goldbohm, G. van Poppel, H. Verhagan and P. A. van den Brandt, “Epidemiological Studies on Brassica Vegetables and Cancer Risk,” Cancer Epidemiology Biomarkers & Prevention, Vol. 5, No. 9, 1996, pp. 733-748.
[20] A. Tubaro, P. Dri, G. Delbello, C. Zilli and R. Della Loggia, “The Croton Oil Ear Test Revisited,” Agents and Actions, Vol. 17, No. 3-4, 1985, pp. 347-349. doi:10.1007/BF01982641
[21] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[22] L. Ernster, “DT Diaphorase,” Methods in Enzymology, Vol. 10, 1967, pp. 309-317. doi:10.1016/0076-6879(67)10059-1
[23] W. H. Habig, M. J. Pabst and W. B. Jakoby, “Glutathione S-Transferases. The First Enzymatic Step in Mercapturic Acid Formation,” The Journal of Biological Chemistry, Vol. 249, No. 22, 1974, pp. 7130-7139.
[24] H. Abei, “Catalase in Vitro,” Methods in Enzymology, Vol. 105, 1984, pp. 121-126. doi:10.1016/S0076-6879(84)05016-3
[25] D. Paglia and W. Valentine, “Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase,” Journal of Laboratory and Clinical Medicine, Vol. 70, No. 1, 1967, pp. 158-169.
[26] P. P. Bradley, D. A. Priebat, R. D. Christensen and G. Rothstein, “Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker,” Journal of Investigative Dermatology, Vol. 78, No. 3, 1982, pp. 206-209. doi:10.1111/1523-1747.ep12506462
[27] A. C. Maehly and B. Chance, “The Assay of Catalases and Peroxidases,” Methods of Biochemical Analysis, Vol. 1, 1954, pp. 357-424. doi:10.1002/9780470110171.ch14
[28] J. L. Wilmer, F. G. Burleson, F. Kayama, J. Kanno and M. I. Luster, “Cytokine Induction in Human Epidermal Keratinocytes Exposed to Contact Irritants and Its Relation to Chemical-Induced Inflammation in Mouse Skin,” Journal of Investigative Dermatology, Vol. 102, No. 6, 1994, pp. 915-922. doi:10.1111/1523-1747.ep12383512
[29] W. M. Nauseef, B. D. Volpp, S. McCormick, K. G. Leidal and R. A. Clark, “Assembly of the Neutrophil Respiratory Burst Oxidase. Protein Kinase C Promotes Cytoskeletal and Membrane Association of Cytosolic Oxidase Components,” The Journal of Biological Chemistry, Vol. 266, No. 9, 1991, pp. 5911-5917.
[30] J. Kim, Y.-N. Cha and Y.-J. Surh, “A Protective Role of Nuclear Factor-Erythroid 2-Related Factor-2 (Nrf2) in Inflammatory Disorders,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol. 690, No. 1-2, 2010, pp. 12-23. doi:10.1016/j.mrfmmm.2009.09.007
[31] C. Nathan, “Neutrophils and Immunity: Challenges and Opportunities,” Nature Reviews Immunology, Vol. 6, No. 3, 2006, pp. 173-182. doi:10.1038/nri1785
[32] A. Mantovani, M. A. Cassatella, C. Costantini and S. Jaillon, “Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity,” Nature Reviews Immunology, Vol. 11, No. 8, 2011, pp. 519-531. doi:10.1038/nri3024
[33] K. Imaizumi, S. Sato, Y. Sakakibara, S. Mori, M. Ohkuma, Y. Kawashima, T. Ban, H. Sasaki and K. Tachiyashiki, “Allyl Isothiocyanate-Induced Changes in the Distribution of White Blood Cells in Rats,” The Journal of Toxicological Sciences, Vol. 35, No. 4, 2010, pp. 583-589. doi:10.2131/jts.35.583
[34] R. Munday and C. M. Munday, “Selective Induction of Phase II Enzymes in the Urinary Bladder of Rats by Allyl Isothiocyanate, a Compound Derived from Brassica Vegetables,” Nutrition and Cancer, Vol. 44, No. 1, 2002, pp. 52-59. doi:10.1207/S15327914NC441_7

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.