Therapeutic angiomyogenesis using human non-viral transduced VEGF165-myoblasts

DOI: 10.4236/ojrm.2012.11001   PDF   HTML     3,402 Downloads   6,868 Views   Citations


This article reviews the scientific development of angiomyogenesis using VEGF165-myoblasts, a patented biotechnology platform in regenerative medicine associated with Human Myoblast Genome Therapy (HMGT), also known as Myoblast Transfer Therapy (MTT). VEGF165-myoblasts are the leading biologics for angiomyogenesis. This review also compares the safety and efficacy of VEGF165-myoblasts transduced using adenoviral vectors, nanoparticles or liposomes, in anticipation of their application in clinical trials in the near future. VEGF165-myoblasts are differentiated myogenic cells capable of extensive division, natural cell fusion, nucleus transfer, cell therapy and genome therapy. Following transplantation they survive, develop and function to revitalize degenerative myocardium in heart failure and ischemic cardiomyopathy animal studies. VEGF165-myoblasts are second generation products of HMGT/MTT which replenishes live cells and genetically repairs degenerating myofibers in Type II diabetes, muscular dystrophies, aging dysfunction and disfigurement. Myoblasts have also been used to enhance skin and muscle appearance in cosmetology. We envision that VEGF165-myoblasts will provide better outcome than their non-tranduced counterparts. Myoblasts are not stem cells. Their competitive advantages over stem cells are presented.

Share and Cite:

Law, P., Ye, L., Haider, H., Lu, P., Law, D. and Sim, E. (2012) Therapeutic angiomyogenesis using human non-viral transduced VEGF165-myoblasts. Open Journal of Regenerative Medicine, 1, 1-9. doi: 10.4236/ojrm.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., et al. (2001) The sequence of the human genome. Science, 291, 1304-1351. doi:10.1126/science.1058040
[2] Law, P.K. (1992) Myoblast transplantation. Science, 257, 1329-1330. doi:10.1126/science.1529326
[3] Law, P.K., Bertorini, T., Goodwin, T.G., Chen, M., Fang, Q.W., Li, H.J., et al. (1990) Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet, 336, 114-115.doi:10.1016/0140-6736(90)91628-N
[4] Law, P.K. (1999) Myoblast transfer as a platform technology for gene therapy. Regulatory Affairs Focus (Technology), 4, 25-27.
[5] Law, P.K., Goodwin, T.G., Fang, Q., Vastagh, G., Jordan, T., Jackson, T., et al. (1998) Myoblast transfer as a platform technology of gene therapy. Gene Therapy and Molecular Biology, 1, 345-363.
[6] Law, P.K. and Goodwin, T.G. (1992) Compositions for and methods of treating muscle degeneration and weakness. US5130141.
[7] Law, P.K. Myoblast therapy for mammalian diseases. EP1407788 (2004), DEP2116DE01, FRP2116FR01, GBP2116GB01, IEP2116IE01, AU748997 (2002), CNZL95192528 (2003), WO9618303 (1996).
[8] Law, P.K. (2002) Cardiomyocytes for heart muscles damaged in heart attacks. US020031501.
[9] Law, P.K. Myoblast transfer therapy for relieving pain and for treating behavioral and perceptive abnormalities. US7166279 (2007), DE69815230T2 (2004), IE0898967 (2003), HK1016897 (2004), ME226489 (2005), EP 0898967 (1999).
[10] Mickle, D.A., Donald, A.G., Li, R.K. and Weisel, R.D. Transplants for myocardial scars and method and cellular preparations thereof. US6579523 (2003), US2004007- 1669 (2004), US20050025749 (2005), US7067121 (2006), EP0985028 (2006), EP1690546 (2006), US2008- 0159997 (2008), US6099832 (2000).
[11] Law, P.K. Cellular transplantation for heart regeneration. US030232431 (2003), WO03085092 (2004), WO0308- 5092 (2004), US20050244384 (2005), WO03085092 (2003).
[12] Law, P.K. (2004) Methods for producing cardiomyocytes capable of proliferation. SI99846.
[13] Law, P.K. (2001) Automated cell processor. US6261832.
[14] Law, P.K. (2001) Instrument for cell culture. SI74036.
[15] Law, P.K. Myogenic cell transfer catheter and method. WO0228470 (2002), SI95355 (2005), EP1324802 (2006), AU02211230 (2007), US60231880 (pending).
[16] Law, P.K. (2004) Mechanisms of myoblast transfer in treating heart failure. WO2004014302, CN03824045.9 (pending), US60402050 (pending).
[17] Jean-Thomas, V., Jean-Pierre, M., Jacques, T., Isabelle, R. and Brigitte, T. (2004) Method for obtaining character-ized muscle-derived cell populations and uses. US2004- 00430 08.
[18] Law, P.K. (2005) Myoblast treatment of diseased or weakened organs. WO2005020916.
[19] Douglas, B.A. and Dinsmore, J.H. (2006) Catheter-based delivery of skeletal myoblasts to the myocardium of dam-aged hearts. US20060263338.
[20] Dinsmore, J.H. (2006) Cellular cardiomyoplasty as supportive therapy in patients with heart disease. US2006-0276685.
[21] Dinsmore, J.H. (2007) Treatment for heart disease. US 20070059288.
[22] Dinsmore, J.H., Jonathan, H.D. and Harout, D. (2004) Improved injection system. WO04012791
[23] Piero, A. Methods and compositions for the repair and/or regeneration of damaged myocardium. WO2007100530 (2006), US7547674 (2009).
[24] Law, P.K. Myoblast therapy for cosmetic treatment. US7341719 (2008), SI99279 (2004), CN03101588 (2003).
[25] Law, P.K. Biologic skin repair and enhancement. WO- 017972(2004), CN03819963 (2008), SI110581 (2007).
[26] Beardsley, T. (1990) Profile: Gene doctor. W. French Anderson pioneers gene therapy. Scientific American, 263, 33-34. doi:10.1038/scientificamerican1290-33
[27] Anderson, W.F. (1990) The beginning. Human Gene The- rapy, 1, 371-372. doi:10.1089/hum.1990.1.4-371
[28] Culver, K.W., Osborne, W.R., Miller, A.D., Fleisher, T.A., Berger, M., Anderson, W.F., et al. (1991) Correction of ADA deficiency in human T lymphocytes using retroviral-mediated gene transfer. Transplantation Proceedings, 23, 170-171.
[29] Anderson, W.F. (1992) Human gene therapy. Science, 256, 808-813. doi:10.1126/science.1589762
[30] Law, P.K., Goodwin, T.G., Fang, Q., Deering, M.B., Dug-girala, V., Larkin, C., et al. (1993) Cell transplantation as an experimental treatment for Duchenne muscular dys-trophy. Cell Transplant, 2, 485-505.
[31] Law, P.K. (1994) Myoblast Transfer: Gene therapy for muscular dystrophy. RG Landes Company, Austin, 139- 154.
[32] Law, P.K., Goodwin, T.G., Fang, Q., Quinley, T., Vastagh, G., Hall, T., et al. (1997) Human gene therapy with myo- blast transfer. Transplantation Proceedings, 29, 2234- 2237. doi:10.1016/S0041-1345(97)00312-6
[33] Gussoni, E., Pavlath, G.K., Lanctot, A.M., Sharma, K.R., Miller, R.G., Steinman, L., et al. (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature, 356, 435-438. doi:10.1038/356435a0
[34] Tremblay, J.P., Malouin, F., Roy, R., Huard, J., Bouchard, J.P., Satoh, A., et al. (1993) Results of a triple blind clini-cal study of myoblast transplantations without immuno-suppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant, 2, 99-112.
[35] Huard, J., Bourchard, J.P., Roy, R., Labrecque, C., Dan-sereau, G., Lemieux, B., et al. (1991) Myoblast transplantation produced dystrophinpositive muscle fibers in a 16-year-old patient with Duchenne muscular dystrophy. Clinical Science, 81, 287-288.
[36] Law, P.K., Goodwin, T.G., Fang, Q., Hall, T.L., Quinley, T., Vastagh, G., et al. (1997) First human myoblast trans-fer therapy continues to show dystrophin after 6 years. Cell Transplant, 6, 95-100. doi:10.1016/S0963-6897(96)00138-8
[37] Law, P.K., Haider, K., Fang, G., Jiang, S., Chua, F., Lim, Y.T., et al. (2002) Mechanisms of myoblast transfer in treating heart failure. In: Kimchi, A., Ed., Advances in Heart Failure, Medimont, 43-48.
[38] Law, P.K. (2002) The regenerative heart. Business briefing, Pharmtech, 65-71.
[39] Law, P.K., Haider, K., Fang, G., Jiang, S., Chua, F., Lim, Y.T., et al. (2004) Human VEGF165-myoblasts produce concomitant angiogenesis/myogenesis in the regenerative heart. Molecular and Cellular Biochemistry, 263, 173-178. doi:10.1023/B:MCBI.0000041859.60354.f5
[40] Law, P.K., Sim, E.K.W., Haider, K.H., Feng, G., Chua, F., Kakuchaya, T., et al. (2004) Myoblast genome therapy and the regenerative heart. In: Kipshidze, N.N. and Serruys, P.W., Eds., Handbook of Cardiovascular Cell Transplantation, Dunitz Ltd, London, 241-257.
[41] Ye, L., Haider, H.Kh., Jiang, S., Ge, R, Law, P.K., Sim E.K. (2005) In vitro functional assessment of human skeletal myoblasts after transduction with adenoviral bicistronic vector carrying human VEGF165 and angiopoietin-1. The Journal of Heart and Lung Transplantation, 24, 1393-1402.
[42] Law, P.K., Weinstein, J., Ben Hain, S., Williams, S., Fang, Q., Hall, T., et al. (2000) World’s first human myoblast transfer into the heart. Front Physiol, A85.
[43] Law, P.K., Weinstein, J., Ben Hain S, Williams, S., Fang, Q., Hall, T., et al. (2000) World’s first human myoblast transfer into the heart. Acta Physiol Scand, 170, A17.
[44] Law, P.K. (2001) Nuclear transfer and human genome therapy. Business Briefing Future Drug Discovery (Genomics), 38-42.
[45] Haider, H.K.H., Jiang, S.J., Ye, L., Aziz, S., Law, P.K., Sim, E.K. (2004) Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplantation Proceedings, 36, 232-235. doi:10.1016/j.transproceed.2003.11.001
[46] Law, P.K., Goodwin, T.G., Fang, Q., Duggirala, V., Larkin, C., Florendo, J.A., et al. (1992) Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscu-lar dystrophy boys. Cell Transplant, 1, 235-244.
[47] Law, P.K., Leo, A.B., Lu, P., Liew, C.-C., Law, D.M., Sim, E.K.W., et al. (2006) Human myoblast genome therapy. Journal of Geriatric Cardiology, 3, 135-151.
[48] Ye, L., Husnain, H., Jiang, S. and Eugene, S. (2004) Therapeutic angiogenesis. Basic Research in Cardiology, 99, 121-132.
[49] Ferrara, N. (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology, 280, C1358-66.
[50] Shibuya, M., Ito, N. and Claesson-Welsh, L. (1999) Struc- ture and function of vascularendothelial growth factor receptor-1 and -2. Current topics and functional restora-tion. European Heart Journal, 24, 404-411.
[51] Freedman, S.B. and Isner, J.M. (2002) Therapeutic angiogenesis for coronary artery disease. Annals of Internal Medicine Journal, 136, 54-71.
[52] Hockel, M., Schlenger, K., Doctrow, S., Kissel, T. and Vaupel, P. (1993) Therapeutic angiogenesis. Archives of Surgery, 128, 423-429. doi:10.1001/archsurg.1993.01420160061009
[53] Haider, H.K.H., Ye, L., Jiang, S., Ge, R., Law, P.K. and Chua, T., et al. (2004) Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. Journal of Molecular Medicine, 82, 539-549. doi:10.1007/s00109-004-0546-z
[54] Ye, L., Haider, H.K.H., Tan, R.S., Toh, W.C.H., Law, P.K., Tan, W.B., et al. (2007) Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation, 116, I-113-20. doi:10.1161/CIRCULATIONAHA.106.680124
[55] Ye, L., Haider, H.K.H., Tan, R., Su, L., Law, P.K., Zhang, W, et al. (2008) Angiomyogenesis using liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials, 29, 2125-2137. doi:10.1016/j.biomaterials.2008.01.014
[56] Ye, L., Haider, H.K.H., Jiang, S.J., Ling, L.H., Ge, R.W., Law, P.K. and Sim, E.K.W. (2005) Reversal of myocardial injury using genetically modulated human skeletal myoblasts in a rodent cryoinjured heart model. The European Journal of Heart Failure, 7, 945-952. doi:10.1016/j.ejheart.2005.03.012
[57] Su, H., Lu, R. and Kan, Y.W. (2000) Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proceedings of the National Academy of Sciences, 97, 13801-13806. doi:10.1073/pnas.250488097
[58] Lee, R.J. and Springer, M.L., Blanco-Bose, W.E., Shaw, R., Ursell, P.C., Blau, H.M. (2000) VEGF gene delivery to myocardium: Deleterious effects of unregulated ex-pression. Circulation, 102, 898-901. doi:10.1161/01.CIR.102.8.898
[59] Lehrman, S. (1999) Virus treatment questioned after gene therapy death. Nature, 401, 517-518. doi:10.1038/43977
[60] Liu, Q. and Muruve, D.A. (2003) Molecular basis of the inflammatory response to adenovirus vectors. Gene Therapy, 10, 935-940. doi:10.1038/
[61] Marshall, E. (2000) Gene therapy death prompts review of adenovirus vector. Science, 286, 2244-2245. doi:10.1126/science.286.5448.2244
[62] Sun, J.Y., Anand-Jawa, V., Chatterjee, S. and Wong, K.K. (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy, 10, 964-976. doi:10.1038/
[63] Kumar, V.V., Singh, R.S. and Chaudhuri, A. (2003) Cationic transfection lipids in gene therapy: successes, setbacks, challenges and promises. Current Medicinal Chemistry, 10, 1297-1306. doi:10.2174/0929867033457458
[64] Davis, M.E. (2002) Nonviral gene delivery systems. Biotechnol, 13,128-131.
[65] Lungwitz, U., Breunig, M., Blunk, T. and Go¨pferich, A. (2005) Polyethylenimine-based nonviral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 60, 247-266. doi:10.1016/j.ejpb.2004.11.011
[66] Suzuki, K., Murtuza, B., Smolenski, R.T., Sammut, I.A., Suzuki, N., Kaneda, Y., et al. (2001) Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor expressing skeletal myoblasts. Circulation, 104, I207-12. doi:10.1161/hc37t1.094524
[67] Law, P.K. and Law, D.M. (2011) Human myoblast genome therapies and devices in regenerative medicine. Recent Patents on Regenerative Medicine, 1, 88-117.
[68] Clinton, H.R. and Obama, B. (2006) Making patient safety the centerpiece of medical liability reform. The New England Journal of Medicine, 354, 2205-2208. doi:10.1056/NEJMp068100
[69] Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland T. et al. (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1199-1209. doi:10.1056/NEJMoa055706
[70] Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H. et al. (2006) Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1210-1221.
[71] Assmus, B., Honold, J., Schachinger, V., Britten, M.B., Fischer-Rasokat, U. and Lehmann, R., (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. The New England Journal of Medicine, 355, 1222-1232. doi:10.1056/NEJMoa051779

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.