Magnetic Properties and Electronic Structure of ThCo4B


We present density functional theory DFT ab initio calculation of the electronic and magnetic properties of ThCo4B compound using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method as implemented in the Wien2k package. The influence of the local environment on the Co magnetic moments is discussed by comparing the magnetic and electronic properties of ThCo4B to its parent ThCo5 compound. The total magnetic moment in these two compounds is dominated by the Co moment. The Spin orbit interaction affects the electronic structure and spin-density maps of the p-state of Th.

Share and Cite:

M. Abu-Elmagd, S. Aly and S. Yehia, "Magnetic Properties and Electronic Structure of ThCo4B," Modeling and Numerical Simulation of Material Science, Vol. 2 No. 3, 2012, pp. 51-59. doi: 10.4236/mnsms.2012.23006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. V. Thang, L. H. Nam, N. P. Duong, et al., “Formation and Magnetic Properties of RCo4Si Compounds,” Journal of Magnetism and Magnetic Materials, Vol. 196-197, 1999, pp. 765-767. doi:10.1016/S0304-8853(98)00948-2
[2] C. Chacon and O. Isnard, “Magnetic Properties of the RCo4B Compounds (R=Y, Pr, Nd, Sm, Gd, Tb),” Journal of Solid State Chemistry, Vol. 154, No. 1, 2000, pp. 242245. doi:10.1006/jssc.2000.8843
[3] C. Zlotea and O. Isnard, “Neutron Diffraction and Magnetic Investigations of the TbCo4M Compounds (M = Al and Ga),” Journal of Magnetism and Magnetic Materials, Vol. 253, No. 3, 2002, pp. 118-129. doi:10.1016/S0304-8853(02)00438-9
[4] C. Chacon and O. Isnard, “Magnetic Properties of the RCo4B Compounds (R = Y, Pr, Nd, Sm, Gd, Tb),” Journal of Solid State Chemistry, Vol. 154, No. 1, 2000, pp. 242-245. doi:10.1006/jssc.2000.8843
[5] P. Vlaic and E. Burzo, “Magnetic Properties and Electronic Structure of Y2Co7-xFexB Compounds,” Moldavian Journal of the Physical Sciences, Vol. 1, 2002, p. 40.
[6] E. Burzo, V. Pop, C. Borodi and R. Ballou, “Magnetic Properties of GdCo4-XMXB Compounds where M = Fe or Ni,” IEEE Transactions on Magnetics, Vol. 30, No. 2, 1994, pp. 628-630. doi:10.1109/20.312357
[7] E. Burzo, V. Pop and N. Plugaru, “Magnetic Properties of YCo4-xFexB Compounds,” Materials Science, Vol. 113, No. 2, 1989, pp. 253-256.
[8] E. Burzo, V. Pop, N. Plugaru and I. Creanga, “Magnetic Properties of YCo4-xFexB Compounds,” Physica Status Solidi (A), Vol. 113, 1989, p. 253.
[9] E. Burzo and M. Ursu, “Magnetic Properties of (Gdx Y1-x)Co4B Compounds,” Journal of Magnetism and Magnetic Materials, Vol. 70, No. 1-3, 1987, pp. 345-346. doi:10.1016/0304-8853(87)90464-1
[10] A. Kowalczik, G. Chelkowska and A. Szajek, “X-Ray Photoemission Spectra and Electronic Structure of GdCo4B,” Solid State Communications, Vol. 120, No. 9-10, 2001, pp. 407-411. doi:10.1016/S0038-1098(01)00402-1
[11] A. Szajek and J. Morkowski, “Calculated Magnetic Moments and Electronic Structures of the Compounds Rn+1Co3n+5B2n, R = Gd, Tb, n = 0, 1, 2, 3, and ∞,” Material Science Poland, Vol. 24, No. 3, 2006, p. 839.
[12] O. Isnard, V. Pop and J. C. Toussaint, “Neutron Diffraction Investigation of the Crystal and Magnetic Structure of the New ThCo4B Compound,” Journal of Physics: Condensed Matter, Vol. 15, No. 6, 2003, p. 791. doi:10.1088/0953-8984/15/6/306
[13] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz and Wien2k, “An Agumented Plane Wave + Local Orbitals for Calculating Crystal Properties,” K. Schwarz, Techn. Universitat, Wien, 2001.
[14] Y. B. Kuzma and N. Bilonizhko, “New Boride Structural Types in the Homologous Series Based on the CaCu5 and CeCo3B2 Types,” Soviet Physics—Crystallography, Vol. 18, 1974, pp. 447-449.
[15] O. Isnard, and C. Chacon Carillo, “Relation between Crystal Structure and Physical Properties of Rn+1M5+3nB2n Phases,” Journal of Alloys and Compounds, Vol. 442, No. 1-2, 2007, pp. 22-28. doi:10.1016/j.jallcom.2006.08.355
[16] J. Wang, Q. Guo and O. J. Kleppa, “Standard Enthalpies of Formation of Some Th Alloys with Group VIII Elements (Co, Ni, Ru, Rh, Pd, Ir and Pt), Determined by High-Temperature Direct Synthesis Calorimetry (Citations: 1),”Journal of Alloys and Compounds, Vol. 313, No. 1-2, 2000, pp. 77-84. doi:10.1016/S0925-8388(00)01157-9
[17] D. Benea, V. Pop and O. Isnard, “Electronic Structure and Magnetic Properties of the ThCo4B Compound,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 1-2, 2008, pp. 36-42. doi:10.1016/j.jmmm.2007.05.002
[18] D. J. Singh, “Planewaves, Pseudopotentials, and the LAPW Method,” Kluwer Academic, Boston, 1994.
[19] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review A, Vol. 140, No. 4A, 1965, pp. 1133-1138.
[20] J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review B, Vol. 45, No. 23, 1992, pp. 13244-13249. doi:10.1103/PhysRevB.45.13244
[21] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[22] D. J. Singh, “Ground-State Properties of Lanthanum: Treatment of Extended-Core States,” Physical Review B, Vol. 43, No. 6, 1991, pp. 6388-6392. doi:10.1103/PhysRevB.43.6388
[23] D. D. Koelling and B. Harmon, “Magnetic Properties of SmCo5 and YCo5,” Journal of Physics C, Vol. 93, No. 10, 1977, p. 3107.
[24] A. Szajek, “Electronic and Magnetic Properties of ThCo4B,” Acta Physica Polonica A, Vol. 113, No. 1, 2008, p. 283.
[25] D. Givord, J. Laforest and R. Lemaire, “Polarized Neutron Study of the Itinerant Electron Metamagnetism in ThCo5,” Journal of Applied Physics, Vol. 50, No. 11, 1979, pp. 7489-7491. doi:10.1063/1.326875
[26] D. Givord, J. Laforest, R. Lemaire and Q. Lu, “Cobalt Magnetism in RCo5-Intermetallics: Onset of 3d Magnetism and Magnetocrystalline Anisotropy (r = Rare Earth or Th),” Journal of Magnetism and Magnetic Materials, Vol. 31, 1983, pp. 191-196.
[27] L. Nordstrom, B. Johansson, O. Eriksson and M. Brooks, “Theoretical Study of the Metamagnetism in ThCo5,” Physical Review B, Vol. 42, No. 13, pp. 8367-8374. doi:10.1103/PhysRevB.42.8367

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.