Studies on Mechanical and Wear Properties of Al6061/Beryl Composites

DOI: 10.4236/jmmce.2012.117056   PDF   HTML     5,846 Downloads   8,246 Views   Citations


Beryl-Al6061 alloy composites having 2-12 wt% of beryl particles were fabricated by liquid metallurgy (stir cast) method. The tensile and wear properties of beryl-Al6061 composites have been evaluated and compared with its base alloy. The results revealed that the Al6061-10 wt% of beryl composites shows an improvement of 15.38% in tensile strength and specific wear rate decreases by 8.9% at normal load of 9.81N when compared to matrix i.e. base alloy. Significant improvement in tensile properties and hardness are noticed as the wt% of the beryl particles increases. The microstructures of the composites were studied to know the uniform dispersion of the beryl particles in matrix. It has been observed that addition of beryl particles significantly improves ultimate tensile strength and hardness properties as compared with that of unreinforced matrix.

Share and Cite:

R. Reddappa, K. Suresh, H. Niranjan and K. Satyanarayana, "Studies on Mechanical and Wear Properties of Al6061/Beryl Composites," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 7, 2012, pp. 704-708. doi: 10.4236/jmmce.2012.117056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. R. Suresh, H. B. Niranjan, P. Martin Jabraj and M. P. Chowdaiah, “Tensile and Wear Properties of Aluminium Composites,” Wear, Vol. 255, No. 1-6, 2003. pp. 638-642. doi:10.1016/S0043-1648(03)00292-8
[2] D. M. Taylor, “Metals Hand Book,” ASM, Materials Park, 1982, pp. 859-863.
[3] P. K. Rohatgi, “Cast Metal Matrix Composites Metal Hand Book,” 9th Edition, ASM International, Materials Park, 1988
[4] K. G. Sathyanarayana, R. M. Pillai, B. C. Pai, M. Kestur-satya, P. K. Rohatgi and J. K. Kim, “Developments in Cast Metal Matrix Composites over Last Three and Half Decades,” In: E. S. Dwarakadas and C. G. Krishnadas Nair, Eds., Proceedings of the Third International Con- ference on Advances in Composites, Bangalore, 2002, pp. 753-763.
[5] C. S. Ramesh, “Processing and Characterization of Metal Matrix Composites,” Proceedings of the National Semi-nar on Recent Trends in Liquid Crystals, Polymer, and Composite Materials, Ramanagaram, 2003, pp. 10-13.
[6] F. M. Hosking, F. Folgar Poritillo, R. Wunderlein and R. Mehrabion, “Composite of Al Alloys Fabrication and Wear Behaviour,” Journal of Materials Science, Vol. 17, No. 2, 1982, pp. 477-198. doi:10.1007/BF00591483
[7] A. Wang and H. J. Rack, “Transition Wear Behavior of SiC-Particulate and SiC-Whisker-Reinforced 7091 Al Metal Matrix Composite,” Materials Science and Engineer- ing: A, Vol. 147, No. 2, 1991, pp. 211-224. doi:10.1016/0921-5093(91)90848-H
[8] A. Wang and I. M. Hutchings, “Wear of Alumina Fiber: Aluminum Metal Matrix Composite by Two Body Abrasion,” Materials Science and Technology, Vol. 5, No. 1, 1989, pp. 71-76. doi:10.1179/026708389790337503
[9] C. S. Ramesh, A. R. Anwar Khan and A. Ramachandra, “Heat Treatment of Al6061-10 wt% SiC Composites,” In: A. F. M. Anwarul Haque, M. Ahmed, A. N. Mustafizul Karim, N. R. Dhar and S. Begum, Eds., Proceedings of the International Conference on Manufacturing, ICM Dhaka, 2002, pp. 21-28.
[10] C. S. Ramesh, S. K. Seshadri and K. J. L. Iyer, “A Survey on Aspects of Wear of Metals,” Indian Journal of Technology, Vol. 29, 1991, pp. 179-185.
[11] C. S. Ramesh, R. Noor Ahmed and M. Safiualla, “Strength and Wear Properties of Cast Copper-TiO2-Boric Acid Hybrid Composites,” In: V. C. Venkatesh and S. Mirdha, Eds., Proceedings of the International Conference ICMAT, Kaula Lumpur, 2004, pp. 836-839.
[12] C. S. Ramesh and R. Noor Ahmed, “A Comparative Stu- dy on Cast Copper-SiC-Gr and Copper-TiO2-Boric Acid Hybrid Composites,” In: A. Kori, Ed., Proceedings of the National Conference AMTP, Bagalkot, 2004, pp. 836-839.
[13] A. Shashishankar, M. Krishna and C. S. Chandrasekhara Murthy, “A Study on Sliding Behaviour of Flyash Reinforced Aluminium 7075 Alloy Composites,” In: E. S. Dwarakadas and C. G. Krishnadas Nair, Eds., Proceedings of the Third International Conference on Advances in Composites, Bangalore, 2002, pp. 583-589.
[14] W. F. Smith, “Structure and Properties of Engineering Alloys,” 2nd Edition, McGraw-Hill, New York, 1993.
[15] L. G. Berry and B. Mason, “Mineralogy,” N.H. Freeman & Co., New York, 1959.
[16] N. A. Deer and J. Zussman, “Rock Forming Minerals,” Longmans Pub. Ltd., London, 2003.
[17] A. B. Gurcan and T. N. Baker, “Wear,” Elsevier Sequoia, Lausanne, 1995, pp. 185-191. doi:10.1016/0043-1648(95)06639-X
[18] R. Higgins, “Engineering Metallurgy,” Krieger Publishing Company, Melbourne, 1983, p. 181.
[19] R. A. Flinn and P. D. Trojan, “Engineering Materials and Their Applications,” 4th Edition, Jaico Pub. House, Bombay, 1993, p. 650, 1993
[20] G. E Deiter, “Mechanical Metallurgy,” 2nd Edition, Mc- Graw-Hill, Kongakusha, 1981, p. 221.
[21] R. J. Arenault and R. M. Fischer, “Microstructure of Fiber and Particulate SiC in 6061 Al Composites,” Scripta Metallurgica, Vol. 17, No. 1, 1983, pp. 67-71. doi:10.1016/0036-9748(83)90072-8
[22] R. J. Arenault, “The Strengthening of Aluminum Alloy 6061 by Fiber and Platelet Silicon Carbide,” Materials Science and Engineering, Vol. 64, No. 2, 1984, pp. 171- 181. doi:10.1016/0025-5416(84)90101-0
[23] M. K. Surappa, “Fabrication and Characterization of Al- Ceramic Particle Composites,” Ph.D Thesis, Indian Insti- tute of Science (IISc.), Bangalore, 1979.
[24] J. Guralnd, “Composite Materials,” Academic Press, Cambridge, 1974
[25] D. A. Koss and S. M. Coply, “Thermally Induced Residual Stress in Eutectic Composites,” Metallurgical and Materials Transactions A, Vol. 2, No. 6, 1971, pp. 1557- 1560.
[26] W. J. Clegg, “A Stress Analysis of the Tensile Deformation of Metal Matrix Composites,” Acta Metallurgica et Materialia, Vol. 36, No. 8, 1988, pp. 2141-2149. doi:10.1016/0001-6160(88)90315-X
[27] M. Taya, K. E. Lulay and D. L. Lloyd, “Strengthening of a Particulate Metal Matrix Composite by Quenching,” Acta Metallurgica et Materialia, Vol. 39, No. 1, 1991, pp. 73-87. doi:10.1016/0956-7151(91)90329-Y
[28] D. L. McDanieal, “Analysis of Stress-Strain, Fracture and Ductility Behavior of Al MMCs Containing Discontinuous Silicon Carbide Reinforcement,” Metallurgical and Materials Transactions A, Vol. 16, No. 6, 1985, pp. 1105- 1113. doi:10.1007/BF02811679
[29] S. Basavarajappa, G. Chandramohan, K. Mukund, M. Ashwin and M. Prabu, “Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites,” Journal of Materials Engineering and Performance, Vol. 15, No. 16, 2006, pp. 668-674. doi:10.1361/105994906X150803
[30] G. B. Veeresh Kumar, C. S. P. Rao and N. Selvaraj, “Studies on Mechanical and Dry Sliding Wear of Al6061-SiC Composites,” Composites Part B: Engineering, Vol. 43, No. 3, 2011, pp. 1185-1191. doi:10.1016/j.compositesb.2011.08.046
[31] F. Tang, X. L. Wu, S. R. Ge, J. C. Ye, H. Zhu, M. Hagi- wara and J. M. Schoenung, “Dry Sliding Friction and Wear Properties of B4C Particulate-Reinforced Al-5083 Matrix Composites,” Wear, Vol. 264, No. 7-8, 2008, pp. 555-561. doi:10.1016/j.wear.2007.04.006

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.