Share This Article:

Characteristics of AC-biased Plasma Antenna and Plasma Antenna Excited by Surface Wave

Abstract Full-Text HTML XML Download Download as PDF (Size:764KB) PP. 279-284
DOI: 10.4236/jemaa.2012.47039    4,613 Downloads   8,195 Views   Citations

ABSTRACT

Plasma’s conductive and dielectric properties have been well known for decades. Plasma antenna is a general terms representing using plasma as a conductive medium to transmit or reflect signals. It has unique properties like low RCS (radar cross section), variable impedance and instant on-off capability. Previous plasma antenna uses RF power to generate the plasma column. We developed AC-biased (alternating current) plasma antenna, which has larger operation frequency scale and lower sustaining power. Signals propagated are coupled into the plasma antenna via capacitive coupling. Impedance of the plasma shifts slightly with the AC current. Radiation pattern of the plasma antenna is less uniform than metal antenna and its gain is related to AC power, from the measuring results of AC-biased plasma antenna we found its advantages compare to the plasma antenna excited by the surface wave.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Zhu, Z. Chen, J. Lv and J. Liu, "Characteristics of AC-biased Plasma Antenna and Plasma Antenna Excited by Surface Wave," Journal of Electromagnetic Analysis and Applications, Vol. 4 No. 7, 2012, pp. 279-284. doi: 10.4236/jemaa.2012.47039.

References

[1] M. Moisan and Z. J. Zakrzewski, “Plasma Sources Based on the Propagation of Electromagnetic Surface Waves,” Journal of Physics D: Applied Physics, Vol. 24, No. 7, 1991, pp. 1025-1048. doi:10.1088/0022-3727/24/7/001
[2] J. P. Rayner, A. P. Whichello and A. D. Cheetham, “Phy- sical Characteristics of Plasma Antennas,” IEEE Transactions on Plasma Science, Vol. 32, No. 1, 2004, pp. 269- 281. doi:10.1109/TPS.2004.826019
[3] G. Cerri, R. De Leo, V. Mariani Primiani and P. Russo, “Measurement of the Properties of a Plasma Column Used as a Radiated Element,” IEEE Transactions on IMT, Vol. 57, No. 2, 2008, pp. 242-247.
[4] W. Shen, J. E. Scharer, N. T. Lam, B. G. Porter and K. L. Kelly, “Properties of a Vacuum Ultraviolet Laser Created Plasma Sheet for a Microwave Reflector,” Journal of Applied Physics, Vol. 78, No. 12, 1995, pp. 6974-6979. doi:10.1063/1.360773
[5] K. L. Kelly, J. E. Scharer, G. Ding, M. Bettenhausen and S. P. Kuo, “Microwave Reflections from a Vacuum Ultraviolet Laser Produced Plasma Sheet,” Journal of Applied Physics, Vol. 85, No. 1, 1999, pp. 63-68. doi:10.1063/1.369392
[6] W. L. Kang, M. Rader and I. Alexeff, “A Conceptual Study of Stealth Plasma Antenna,” Proceedings of the 1996 IEEE International Conference on Plasma Science, Boston, 3-5 June 1996, p. 261. doi:10.1109/PLASMA.1996.551505
[7] W. Alexeff, L. Kang, M. Rader, et al., “A Plasma Stealth Antenna for the US Navy,” Proceedings of the 1998 IEEE International Conference on Plasma Science, Raleigh, 1-4 June 1998, p. 277.
[8] M. Moisan and Z. J. Zakrzewski, “Plasma Sources Based on the Propagation of Electromagnetic Surface Waves,” Journal of Physics D: Applied Physics, Vol. 24, No. 7, 1991, pp. 1025-2048. doi:10.1088/0022-3727/24/7/001
[9] R. F. Fernsler, W. M. Manheimer, R. A. Meger, J. Ma- thew, D. P. Murphy, R. E. Pechacek and J. A. Gregor, “Production of Large Area Plasmas by Electron Beams,” Physics of Plasmas, Vol. 5, No. 5, 1998, pp. 2137-2144. doi:10.1063/1.872886
[10] W. M. Manheimer, R. F. Fernsler and M. S. Gitlin, “High Power, Fast, Microwave Components Based on Beam Generated Plasmas,” IEEE Transactions on Plasma Science, Vol. 26, No. 5, 1998 pp. 1543-1555. doi:10.1109/27.736059
[11] D. P. Murphy, R. F. Fernsler, R. E. Pechacek and R. A. Meger, “Microwave Emission from Plasmas Produced by Magnetically Confined Electron Beams,” IEEE Transactions on Plasma Science, Vol. 30, No. 1, 2002, pp. 436- 441. doi:10.1109/TPS.2002.1003893
[12] G. G. Borg, J. H. Harris, D. G. Miljak, et al., “Application of Plasma Columns to Radio—Frequency Antennas,” Applied Physics Letters, Vol. 74, No. 22, 1999, pp. 3272-3274. doi:10.1063/1.123317
[13] G. G. Borg, J. H. Harris, D. G. Miljak and N. M. Martin, “Application of Plasma Columns to Radio Frequency An- tennas,” Applied Physics Letters, Vol. 74, No. 22, 1999, pp. 3272-3274. doi:10.1063/1.123317
[14] G. G. Borg, J. H. Harris, N. M. Martin, D. Thorncraft, R. Milliken, D. G. Miljak, B. Kwan, T. Ng and J. Kircher, “Plasmas as Antennas: Theory, Experiment and Applications,” Physics of Plasmas, Vol. 7, No. 5, 2000, pp. 2198- 2202. doi:10.1063/1.874041
[15] J. W. Lv, Z. L. Chen and Y. S. Li, “Two-Dimensional Models of the Cylindrical Monopole Plasma Antenna Excited by the Surface Wave,” WSEAS Transactions on Communication, Vol. 10, No. 11, 2011, pp. 323-330.
[16] J. W. Lv, Z. L. Chen and Y. S. Li, “A Self-Consistent Model on Cylindrical Monopole Plasma Antenna Excited by Surface Wave Based on the Maxwell-Boltzmann Equation,” Journal of Electromagnetic Application and Analysis, Vol. 3,No. 8, 2011, pp. 297-304.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.