Share This Article:

Effect of Helix Pitch Angle on the Modal Dispersion Characteristic of Step-Index Optical Fiber

Abstract Full-Text HTML XML Download Download as PDF (Size:251KB) PP. 275-278
DOI: 10.4236/jemaa.2012.47038    3,059 Downloads   5,308 Views   Citations

ABSTRACT

The general characteristic equation is derived for the helically cladded step-index optical fiber. The dispersion curves are drawn for the different pitch angles Ψ and mode order ν = 1. The effect of helix pitch angle on the dispersion characteristics and also on the modal cut-off condition is examined. Except for the lowest order mode, all the modes appear in pairs. The lowest order mode displays the negative dispersion for the some value of normalized frequency V and depends on the helix pitch angle Ψ.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Mishra, D. Kumar and O. Singh, "Effect of Helix Pitch Angle on the Modal Dispersion Characteristic of Step-Index Optical Fiber," Journal of Electromagnetic Analysis and Applications, Vol. 4 No. 7, 2012, pp. 275-278. doi: 10.4236/jemaa.2012.47038.

References

[1] A. W. Snyder and J. D. Love, “Optical Waveguide Theory,” Chapman and Hall, London, 1983.
[2] C. R. Pollock, “Fun-damentals of Optoelectronics,” Tom Casson, USA, 1995.
[3] D. A. Watkins, “Topics in Electromagnetic Theory,” John Wiley & Sons, New York, 1958.
[4] U. N. Singh, O. N. Singh II, P. Khastgir and K. K. Dey, “Dispersion Characteristics of a Helically Cladded StepIndex Optical Fiber: An Analytical Study,” Journal of Optical Society of America, Vol. 12, No. 7, 1995, pp. 1273-1278.
[5] D. Kumar and O. N. Singh II, “Modal Characteristic Equation and Dispersion Curves for an Elliptical Step-Index Optical Fiber with a Conducting Helical Winding on the Core-Cladding Boundary—An Analytical Study,” Journal of Lightwave Technology, Vol. 20, No. 8, 2002, pp. 1416-1424. doi:10.1109/JLT.2002.800799
[6] J. R. Pierce, “Travelling Wave Tubes,” D. Van Nostrand Co., Princeton, 1950.
[7] S. Sensiper, “Electromagnetic Wave Propagation on Helical Conductor,” Proceedings of I. R. E., February 1955, Vol. 43, No. 2, pp. 149-161. doi:10.1109/JRPROC.1955.278072
[8] H. G. Unger, “Winding Tolerances in Helix Waveguide,” Bell System Tech-nical Journal, Vol. 39, 1960, pp. 627643.
[9] N. S. Kapany and J. J. Burke, “Fiber Optics. IX. Waveguide Effects,” Journal of Optical Society of America, Vol. 51, No. 10, 1961, pp. 1067-1078. doi:10.1364/JOSA.51.001067
[10] P. J. B. Clarricoats and K. B. Chan, “Propagation BehaVior of Cylindrical-Dielectric-Rod Waveguides,” Proceedings of IEEE, Vol. 120, 1973, pp. 1371-1378.
[11] E. Snitzer, “Cylindrical Dielectric Waveguide Modes,” Journal of Optical Society of America, Vol. 51, No. 5, 1961, pp. 491-498. doi:10.1364/JOSA.51.000491
[12] A. W. Snyder and W. R. Young, “Modes of Optical Waveguides,” Journal of Optical Society of America, Vol. 68, No. 3, 1978, pp. 297-309. doi:10.1364/JOSA.68.000297
[13] S. K. Datta, L. Kumar and B. N. Basu, “Analysis of Dielectric Loss in a Helix Slow-Wave Structure,” Defence Science Journal, Vol. 59, No. 5, 2009, pp. 549-552.
[14] S. Ahn and A. K. Ganguly, “Analysis of Helical Waveguide,” IEEE Transactions on Electron Devices, Vol. 33, No. 9, 1986, pp. 1348-1355. doi:10.1109/T-ED.1986.22669
[15] J. B. Kyle and R. W. Grow, “The Helically Wrapped Circular Waveguide,” IEEE Transactions on Electron Devices, Vol. 34. No. 8, 1987, pp. 1873-1884.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.