Effect of Thermoplastic Incorporation on the Performance of Thermosetting Matrix


In this work, the morphology, thermal and viscoelastic properties, deformation and fracture behaviour of a commercial vinylester resin modified with a biodegradable polymer was investigated. Flexural, impact and fracture tests were per-formed on the blends with different polycaprolactone (PCL) contents. They exhibited improved stiffness and fracture properties in comparison to the neat resin. From SEM analysis of fracture surfaces, stress whitening and branced frac-ture paths toughening mechanisms were identified. The dependence of the glass transition temperature with PCL con-tent was adequately fitted by simple models available in the literature. From the results of these models along with the results of calorimetric studies and SEM analysis, it can be concluded that the interaction between vinylester and PCL is strong enough to avoid phase separation.

Share and Cite:

R. Ollier, A. Stocchi, E. Rodriguez and V. Alvarez, "Effect of Thermoplastic Incorporation on the Performance of Thermosetting Matrix," Materials Sciences and Applications, Vol. 3 No. 7, 2012, pp. 442-447. doi: 10.4236/msa.2012.37062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. J. Robinette, S. Ziaee and G. R. Palmese, “Toughening of Vinyl Ester Resin Using Butadiene-Acrylonitrile Rubber Modifiers,” Polymer, Vol. 45, No. 18, 2004, pp. 6143- 6154. doi:10.1016/j.polymer.2004.07.003
[2] J. Lee and A. F. Yee, “Inorganic Particle Toughening I: Micro-Mechanical Deformations in the Fracture of Glass Bead Filled Epoxies,” Polymer, Vol. 42, No. 2, 2001, pp. 577-588. doi:10.1016/S0032-3861(00)00397-9
[3] T. Kawaguchi and R. A. Pearson, “The Effect of Particle- Matrix Adhesion on the Mechanical Behavior of Glass Filled Epoxies. Part 2. A Study on Fracture Toughness,” Polymer, Vol. 44, No. 15, 2003, pp. 4239-4247. doi:10.1016/S0032-3861(03)00372-0
[4] J. P. Pascault and R. J. J. Williams, “Polymer Blends Vol- ume 1: Formulation,” John Wiley and Sons, New York, 2000.
[5] S. Pham and P. J. Burchill, “Toughening of Vinyl Ester Resins with Modified Polybutadienes,” Polymer, Vol. 36, No. 17, 1995, pp. 3279-3285. doi:10.1016/0032-3861(95)99426-U
[6] B. B. Johnsen, A. J. Kinloch and A. C. Taylor, “Tough- ness of Syndiotactic Polystyrene/Epoxy Polymer Blends: Microstructure and Toughening Mechanisms,” Polymer, Vol. 46, No. 18, 2005, pp. 7352-7369. doi:10.1016/j.polymer.2005.05.151
[7] X. Song, S. Zheng, J. Huang, P. Zhu and Q. Guo, “Misci- bility, Morphology and Fracture Toughness of Tetrafunc- tional Epoxy Resin/Poly (Styrene-co-Acrylonitrile) Blends,” Journal of Materials Science, Vol. 35, No. 22,2000, pp. 5613-5619. doi:10.1023/A:1004824628535
[8] J. K. Pandey, K. R. Reddy, A. P. Kumar and R. P. Singh, “An Overview on the Degradability of Polymer Nano- composites,” Polymer Degradation and Stability, Vol. 88, No. 2, 2005, pp. 234-250. doi:10.1016/j.polymdegradstab.2004.09.013
[9] P. Dubois, C. Jacobs, R. Jerome, P. Teyssie, “Macromolecular Engineering of Polylactones and Polylactides. 4. Mechanism and Kinetics of Lactide Homopolymerization by Aluminum Isopropoxide,” Macromolecules, Vol. 24, No. 9, 1991, pp. 2266-2270. doi:10.1021/ma00009a022
[10] C. De Kesel, C. V. Wauven and C. David, “Biodegrada- tion of Polycaprolactone and Its Blends with Poly(Vi- nylalcohol) by Micro-Organisms from a Compost of House- Hold Refuse,” Polymer Degradation and Stability, Vol. 55, No. 1, 1997, pp. 107-113. doi:10.1016/0141-3910(95)00138-7
[11] X. Luo, R. Ou, D. E. Eberly, A. Singhal, W. Viratyaporn and P. T. Mather, “A Thermoplastic/Thermoset Blend Exhibiting Thermal Mending and Reversible Adhesion,” ACS Applied Materials & Interfaces, Vol. 1, No 3, 2009, pp. 612-620. doi:10.1021/am8001605
[12] X. Yang, F. Yi, Z. Xin and S. Zheng, “Morphology and Mechanical Properties of Nanostructured Blends of Ep- oxy Resin with Poly(Caprolactone)-Block-Poly(Butadi- ene-co-Acrylonitrile)-Block-Poly(Caprolactone) Triblock Copolymer,” Polymer, Vol. 50, No. 16, 2009, pp. 4089- 4100. doi:10.1016/j.polymer.2009.06.030
[13] T. G. Fox, “Influence of Diluent and of Copolymer Com- position on the Glass Temperature of a Polymer System,” ulletin of the American Physical Society, Vol. 1, 1956, pp. 123.
[14] M. Gordon and J. S. Taylor, “Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non- Crystalline Copolymers,” Journal of Applied Chemistry, Vol. 2, No. 9, 1952, pp. 493-500. doi:10.1002/jctb.5010020901
[15] G. Bélorgey, M. Aubin and R. E. Prud’homme, “Studies of Polyester/Chlorinated Poly(Vinyl Chloride) Blends,” Polymer, Vol. 23, No. 7, 1982, pp. 1051-1056. doi:10.1016/0032-3861(82)90407-4
[16] G. Bélorgey and R. E. Prud'Homme, “Miscibility of Poly- caprolactone/Chlorinated Polyethylene Blends,” Journal of Polymer Science: Polymer Physics Edition, Vol. 20, No. 2, 1982, pp. 191-203. doi:10.1002/pol.1982.180200203
[17] P. Huang, S. Zheng, J. Huang, Q. Guo and W. Zhu, “Mis- cibility and Mechanical Properties of Epoxy Resin/Poly- sulfone Blends,” Polymer, Vol. 38, No. 22, 1997, pp. 5565- 5571. doi:10.1016/S0032-3861(97)00104-3
[18] K. Mimura, H. Ito and H. Fujioka, “Toughening of Epoxy Resin Modified with in Situ Polymerized Thermoplastic Polymers,” Polymer, Vol. 42, No. 22, 2001, pp. 9223- 9233. doi:10.1016/S0032-3861(01)00460-8
[19] A. B. Cherian, L. A. Varghese and E. T. Thachil, “Epoxy- Modified, Unsaturated Polyester Hybrid Networks,” Euro- pean Polymer Journal, Vol. 43, No. 4, 2007, pp. 1460- 1469. doi:10.1016/j.eurpolymj.2006.12.041
[20] F.-L. Jin and S.-J. Park, “Impact-Strength Improvement of Epoxy Resins Reinforced with a Biodegradable Poly- mer,” Materials Science and Engineering: A, Vol. 478, No. 1-2, 2008, pp. 402-405. doi:10.1016/j.msea.2007.05.053

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.