Variable Range Hopping in Hydrogenated Amorphous Silicon-Nickel Alloys

Abstract

On the insulating side of the metal-insulator transition (MIT), the study of the effect of low Temperatures T on the electrical transport in amorphous silicon-nickel alloys a-Si1-yNiy:H exhibits that the electrical conductivity follows, at the beginning, the Efros-Shklovskii Variable Range Hopping regime (ES VRH) with T-1/2. This behaviour showed that long range electron-electron interaction reduces the Density Of State of carriers (DOS) at the Fermi level and creates the Coulomb gap (CG). For T higher than a critical value of temperature TC, we obtained the Mott Variable Range Hopping regime with T-1/4, indicating that the DOS becomes almost constant in the vicinity of the Fermi level. The critical temperature TC decreases with nickel content in the alloys.

Share and Cite:

A. Narjis, A. El kaaouachi, A. Sybous, L. Limouny, S. Dlimi, A. Aboudihab, J. Hemine, R. Abdia and G. Biskupski, "Variable Range Hopping in Hydrogenated Amorphous Silicon-Nickel Alloys," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 517-520. doi: 10.4236/jmp.2012.37070.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. F. Mott, “Conduction in glasses containing transition metal ions,’’ J. Non-Cryst. Solids, vol.1, 1968, pp. 1-17.
[2] N. F. Mott, “Metal-Insulator Transitions,” Taylor and Francis, London, 1974.
[3] B. I. Shklovskii and A. L. Efros, “Electronic Properties of Doped Semiconductors,” Springer, Berlin, 1984, pp. 191-195.
[4] L. Efros and B. I. Shklovskii, “Coulomb gap and low-temperature conductivity of disordered systems,’’ J. Phys. C, vol. 8, 1975, L49.
[5] A. El kaaouachi, A. Nafidi and G. Biskupski, “Positive and negative magnetoresistance on both sides of the metal-insulator transition in metallic n-type InP,’’ Semiconductors Sciences and Technology, vol. 18, 2003, pp. 69-74.
[6] R. Abdia, A. El kaaouachi, A. Nafidi and J. Himine, “Positive magnetoresistance behaviour in the insulating side of the metal–insulator transition in CdSe,” Physica B Condensed Matter, vol. 373, 2006, pp. 96-99.
[7] A. El kaaouachi, R. Abdia and A. Nafidi, “Positive magnetoresistance in the variable range hopping regime in CdSe, Physica E: Low-dimensional Systems and Nanostructures,’’ Physica E, vol. 32, 2006, pp. 419-421.
[8] R. Abdia, A. El kaaouachi, A. Nafidi, G. Biskupski and J. Hemine, “Variable range hopping conductivity and negative magnetoresistance in n-type InP semiconductor,” Journal of Solid State Electronics, vol. 53, 2009, pp. 469–472.
[9] A.G. Zabrodskii and K.N. Zinoveva, “Low-temperature conductivity and metal insulator transition in compensate n-Ge,’’ Sov. Phys. JETP 59, 1984, p. 425.
[10] R. Rosenbaum, “Crossover from Mott to Efros-Shklovskii variable-range hopping conductivity in InxOy,” Phys.Rev.B 44, 1991, pp. 3599-3603.
[11] M. Iqbal, J. Galibert, J. Léotin, S. Askenazy, S. Waffenschmidt and J. Wosnitza, “Coulomb gap shrinkage in compensated Si:(P, B) in high magnetic fields,” Physica B 246-247, 1998, pp. 282-285.
[12] A. El kaaouachi, R.Abdia, A. Nafidi and G. Biskupski, “Crossover phenomenon for variable range hopping conduction and positive magnetoresistance in insulating N-Type InP,’’ Journal of Annales de Chimie Sciences des Matériaux France, Vol 33/4, 2008, pp. 357-364.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.