Share This Article:

Ferroelectric Phase Transition in Graphene with Anderson Interaction

Abstract Full-Text HTML Download Download as PDF (Size:289KB) PP. 72-76
DOI: 10.4236/msa.2010.12013    5,188 Downloads   8,611 Views   Citations

ABSTRACT

The normal transverse electric field which appears in impurity graphene spontaneously in the presence of a high applied electric field was calculated. The given effect can be associated with non-equilibrium of electron subsystem in graphene. The characteristics of spontaneous field on the parameters of the problem were investigated.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Yanyushkina, M. Belonenko and N. Lebedev, "Ferroelectric Phase Transition in Graphene with Anderson Interaction," Materials Sciences and Applications, Vol. 1 No. 2, 2010, pp. 72-76. doi: 10.4236/msa.2010.12013.

References

[1] G. M. Shmelev and I. I. Maglevanny, “Electric-Field- Induced Ferroelectricity of Electron Gas,” Journal of Physics, Vol. 10, No. 31, 1998, pp. 6995-7002.
[2] G. М. Shmelev, I. I. Maglevaniy and Е. М. Epshtein, “Ferroelectric Properties of Non-Equilibrium Electron Gas,” Russian Physics Journal, Vol. 41, No. 4, 1998, pp. 72-79.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, Vol. 438, No. 7065, November 2005, pp. 197-200.
[5] Y. Zhang, J. W. Tan, H. L. Stormer and P. Kim, “Experimental Observation of The Quantum Hall Effect And Berry's Phase in Graphene,” Nature, Vol. 438, No. 7065, November 2005, pp. 201-204.
[6] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, No. 7100, July 2006, pp. 282-286.
[7] A. M. Zheltikov, “Ultrashort Pulses and Methods of Nonlinear Optics,” Fizmatlit, Moscow, 2006.
[8] T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the Electronic Structure of Bilayer Graphene,” Science, Vol. 313, No. 5789, August 2006, pp. 951-954.
[9] A. Nagashima, K. Nuka, H. Itoh, C. Oshima and S. Otani, “Electronic States of Monolayer Graphite Formed on Tic(111) Surface,” Surface Science, Vol. 291, No. 1-2, 1993, pp. 93-98.
[10] M. B. Belonenko, N. G. Lebedev and O. Yu. Tuzalina, “Electromagnetic Solitons in a System of Graphene Planes with Anderson Impurities,” Journal of Russian Laser Research, Vol. 30, No. 2, 2009, pp. 102-109.
[11] Y. A. Izyumov and D. S. Аlekseev, “Ferromagnetic State in the Anderson Model,” Fizika Metal, Materialoved, Vol. 97, January 2004, pp. 18-27.
[12] Y. A. Izyumov and N. I. Chacshin, “Hubbard model in the representation of the generating functional,” Fizika Metal, Materialoved, Vol. 97, No. 3, March 2004, pp. 5-14.
[13] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, Vol. 71, No. 9, May 1947, pp. 622-634.
[14] E. M. Epshtein, I. I. Maglevanny, a G. M. Shmelev, “Electric-Field-Induced Magnetoresistance of Lateral Superlattices,” Journal of Physics, Vol. 8, No. 25, 1996, pp. 4509-4514.
[15] F. G. Bass and A. P. Tetervov, “High-Frequency Phenomena in Semiconductor Superlattices,” Physics Reports, Vol. 140, No. 5, 1986, pp. 237-322.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.