Growth and Characterization of L-glutamic Acid Hydro Chloro Bromide,A New Nonlinear Optical Material

DOI: 10.4236/jmmce.2011.101004   PDF   HTML     7,470 Downloads   8,708 Views   Citations


The influence of mixed acids in the growth and characteristic properties of a nonlinear optical material L-glutamic acid hydro chloro bromide abbreviated as LGAHCB was examined. Single crystal X-ray diffraction analysis was used to calculate the lattice parameters of the crystals. Fourier transform infrared spectroscopies were performed to study the molecular vibrations of the grown crystal. The optical transmission spectrum shows very low absorption in the entire visible region. The powder second harmonic generation efficiency of LGAHCB is 1.5 times efficient as potassium dihydrogen phosphate (KDP).

Share and Cite:

S. Kumararaman, K. Kirubavathi and K. Selvaraju, "Growth and Characterization of L-glutamic Acid Hydro Chloro Bromide,A New Nonlinear Optical Material," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 1, 2011, pp. 49-57. doi: 10.4236/jmmce.2011.101004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, Wiley-Interscience, New York, 1991.
[2] D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, vols. 1and 2, Academic Press, New York, 1987.
[3] S.S. Gupte, A. Marcano, R.D. Pradhan, C.F. Desai, J. Melikechi, Appl. Phys.89 (2001) 4039
[4] T. Uma Devi, N. Lawrence, R. Ramesh Babu, K. Ramamurthi, J. Cryst. Growth, 310 (2008) 116.
[5] S.A. Martin Britto Dhas, S. Natarajan, Opt. Comm. 281 (2008) 457.
[6] L. Misoguti, A.T. Varela, F.d. Nunes, V.S. Bagnato, F.E.A.Melo, J. Mendes Filho, S.C.Zilio, Opt. Mater. 6 (1996) 147.
[7] M. Kitazawa, R. Higuchi, M. Takahashi, Appl. Phys. Lett. 64 (1994) 2477.
[8] D. Eimert, S. Velsko, L. Davis, F. Wang, G. Loiaccono, G. Kennady, IEEE J. Quantum electron. 25 (1989) 179.
[9] M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shield, B.G. Penn, D.O. Frazier, J. Cryst. Growth 204 (1999) 179.
[10] G. Ramesh Kumar, S. Gokul Raj, R.Sankar, R. Mohan, S. Pandi, R. Jayavel, J. Cryst. Growth 267 (2004) 213.
[11] S. Dhanuskodi, K. Vasantha, Cryst. Res. Technol. 39 (2005) 259.
[12] K.Kirubavathi, K.Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochim. Acta A. 69 ( 2008) 1283.
[13] K. Selvaraju, R. Valluvan, K. Kirubavathi, S. Kumararaman, Opt. Comm. 269 (2007) 230.
[14] M. Delfino, G.M. Loiacono, J.A. Nicolosi, J. Solid State Chem. 23 (1978) 289.
[15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, 1986.
[16] Jag Mohan, Organic Spectroscopy Principles and Applications, Narosa Publishing House, New Delhi, 2005.
[17] R.S. Krishnan, V.N. Sankaranarayanan, K.Krishnan, J. Indian Inst. Sci. 55 (1973) 66.
[18] B.W. Mott, Microindentation Hardness Testing, vol. 206, Butterworths, London, 1956.
[19] S. K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.