Share This Article:

Application of tetratozilat meso-tetrakis (4-methylpyridil) porphyrin as effective sensor for metal cations in plasma-solution systems

Abstract Full-Text HTML Download Download as PDF (Size:451KB) PP. 461-465
DOI: 10.4236/ns.2012.47062    3,847 Downloads   6,388 Views   Citations

ABSTRACT

Synthetic porphyrins have, in the last years, gained increasing interest in analytical chemistry as unique reagents for the detection of metal ions. The porphyrin is a high sensitive chromogenic reagent. Porphyrins and their metal complexes generally exhibit characteristic sharp and intensive absorption bands in visible region. The region from 400 to 500 nm, which is called the Soret band, shows the most intensive absorption, and molar absorptivities about 105 are often found. Soret band (400-500 nm) shows the most intensive absorption of these compounds, molar absorptivities often being about 105. The Soret band is widely used for spectro- photometric detection of metalloporphyrins. From the perspective of analytical chemistry, the porphyrin ligand has turned out to be very versatile, and almost all metals have been combined with porphyrin. From this point of view several porphyrins become useful as the spectrophotometric reagents for the determination of metal ions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Vashurin, A. , Pukhovskaya, S. , Kuzmicheva, L. , Titova, Y. and Golubchikov, O. (2012) Application of tetratozilat meso-tetrakis (4-methylpyridil) porphyrin as effective sensor for metal cations in plasma-solution systems. Natural Science, 4, 461-465. doi: 10.4236/ns.2012.47062.

References

[1] Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. and Yahia, L.H. (2001) Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226, 1-21. doi:10.1016/S0378-5173(01)00752-9.
[2] Zakharov, A.G., Maximov, A.I. and Titova, Yu.V. (2007) Physicochemical properties of plasma-solution systems and prospects for their use in technology. Russian Chemical Review, 76, 235-251. doi:10.1070/RC2007v076n03ABEH003638.
[3] Shi, X. M., Li, Y.X., Zhang, G.J., Ma, Y. and Shao, X.J. (2011) Experimental study on inactivation of bacterial endotoxin by using dielectric barrier discharge. Plasma Science and Technology, 13, 651. doi:10.1088/1009-0630/13/6/03
[4] Titov, V.A., Rybkin, V.V., Shikova, T.G., Ageeva, T.A., Golubchikov, O.A. and Choi, H.-S. (2005) Study on the application possibilities of an atmospheric pressure glow discharge with liquid electrolyte cathode for the modification of polymer materials. Surface and Coatings Technology, 199, 231-236. doi:10.1016/j.surfcoat.2005.01.037
[5] Malik, M.A. (2010) Water purification by plasmas: Which reactors are most energy efficient? Plasma Chemistry and Plasma Processing, 30, 21-31. doi: 10.1007/s11090-009-9202-2
[6] Joshi, R., Schulze, R.-D., Meyer-Plath, A. and Friedrich, J.F. (2008) Selective surface modification of poly(propylene) wit OH and COOH groups using liquid-plasma system. Plasma Processes and Polymers, 5, 695-707. doi: 10.1002/ppap.200700175
[7] Titov, V.A., Shikova, T.G., Rybkin, V.V., Smirnov, D.S., Ageeva, T.S. and Choi, H.-S. (2006) Modification of polyethylene, polypropylene and cotton using atmospheric pressure glow discharge with liquid electrolyte cathode. High Temperature Material Processes, 10, 467-478. doi: 10.1615/HighTempMatProc.v10.i3.100
[8] Rud, A.D., Perekos, A.E., Ogenko, V.M., Shpak, A.P., Uvarov, V.N., Chuistov, K.V., Lakhnik, A.M., Voynash, V.Z. and Ivaschuk, L.I. (2007) Different states of carbon produced by high-energy plasmochemistry synthesis. Journal of Non-Crystalline Solids, 353, 3650-3654. doi: 10.1016/j.jnoncrysol.2007.05.128
[9] Kong, M.G., Keidar, M. and Ostrikov, K. (2011) Plasmas meet nanoparticles—where synergies can advance the frontier of medicine. Journal of Physics D: Applied Physics, 44, 174018. doi:10.1088/0022-3727/44/17/174018
[10] Lukes, P. and Locke, B.R. (2005) Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. Journal of Physics D: Applied Physics, 38, 4074 doi:10.1088/0022-3727/38/22/010
[11] Snizhko, L.O., Yerokhin, A.L., Pilkington, A., Gurevina, N.L., Misnyankin, D.O., Leyland, A. and Matthews, A. (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta, 49, 2085-2095. doi:10.1016/j.electacta.2003.11.027
[12] Malik, M.A., Ghaffar, A. and Malik S.A. (2001) Water purification by electrical discharges. Plasma Sources Science and Technology, 10, 82. doi:10.1088/0963-0252/10/1/311
[13] Nagiev, T.M. (2006) 4-Conjugated reactions of oxidation with hydrogen peroxide in the gas phase. Coherent Synchronized Oxidation Reactions by Hydrogen Peroxide, 91- 145. doi:10.1016/B978-044452851-3/50005-4
[14] Ma, D.L., Xia, D., Cui, F.L., Li, J.P. and Wang Y. (1999) A new sensitive reagent for identifying and determining Cu2+. Talanta, 48, 9-13. doi:10.1016/S0039-9140(98)00033-2
[15] Biesaga, M., Pyrzynska, K. and Trojanowicz, M. (2000) Porphyrins in analytical chemistry: A review. Talanta, 51, 209-224. doi:10.1016/S0039-9140(99)00291-X
[16] Cano-Raya, C., Fernández-Ramos, M.D. and CapitánVallvey L.F. (2006) Fluorescence resonance energy transfer disposable sensor for copper(II). Analytica Chimica Acta, 555, 299-307. doi:10.1016/j.aca.2005.09.011
[17] Berezin, B.D. (1981) Coordination compounds of porphyrins and phthalocyanines. John Wiley, Toronto.
[18] Smith, K.M. (1975) Porphyrins and metalloporphyrins. Elsevier Science, Amsterdam.
[19] Vashurin, A.S., Pukhovskaya, S.G., Semeikin, A.S. and Golubchikov, O.A. (2012) Catalytic properties of cobalt meso-tetrakis(4-methylpyridiniumyl)porphyrin tetratosylate in the oxidation of sodium diethyldithiocarbamate. Macroheterocycles, 5, 72-75. doi: 10.6060/mhc2012.111251v
[20] Ivanova, Yu.B., Mamardashvili, N.Zh., Semeikin, A.S. and Glazunov, A.V. (2010) Pyridyl-substituted porphyrins: I. synthesis and basicity of monopyridylporphyrins. Russian Journal of Organic Chemistry, 46, 144-149. doi: 10.1134/S1070428010010161
[21] Hambright, P. (2009) Chemistry of water soluble porphyrins. In: Kadish, K., Smith, K. and Guilard, R., Eds., The Porphyrin Handbook, Elsevier, Academic Press, 3, 132-208.
[22] Sutter, T.P.G., Rahimi, R., Hambraght, P., Boomer, J., Kumar, M. and Neta, P.J. (1993) Steric and inductive effects on the basicity of porphyrins and on the site of protonation of porphyrin dianions: Radiolytic reduction of porphyrins and metalloporphyrins to chlorins or phlorins. Journal of the Chemical Society, Faraday Transactions, 89, 495-502. doi:10.1039/FT9938900495

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.