Share This Article:

Modulation of Interval–Force Dependence of Rat Papillary Muscle at Acute and Course Exposure of Amiodarone

Abstract Full-Text HTML Download Download as PDF (Size:196KB) PP. 342-347
DOI: 10.4236/pp.2012.33046    2,690 Downloads   5,096 Views   Citations

ABSTRACT

Change of interval–force dependence of rat papillary muscles at acute and course use of amiodarone was investigated. Methods. The experiments were performed on isolated papillary muscles of Wistar rats. The extrasystolic (0,2-1,5 s), postextrasystolic contractions and post-rest (4-60 s) reactions of rat left papillary muscles perfused Krebs-Henseleit solution with amiodarone (1 μM) and papillary muscles of rat treated amiodarone in dose 20 mg/kg/day for 14 days were investigated. Results. It has been found that both acute and course use of amiodarone decreases the amplitude of extrasystolic contraction. At the same time, only acute use of amiodarone leads to additional enhancement of potentialtion of contractile response at extrasystolic impulse and performance of post-rest test. Conclusion was made, that both acute and course use of amiodarone decreases excitability of cardiomyocytes but only at course use this antiarrythmic drug increases effective refractory period of myocardium. Acute exposure of amiodarone is accompanied with change of functional state of cardiomyocyte sarcoplasmatic reticulum.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Afanasiev, D. Kondratyeva, S. Popov and R. Batalov, "Modulation of Interval–Force Dependence of Rat Papillary Muscle at Acute and Course Exposure of Amiodarone," Pharmacology & Pharmacy, Vol. 3 No. 3, 2012, pp. 342-347. doi: 10.4236/pp.2012.33046.

References

[1] S. J. Connolly, “Evidence-Based Analysis of Amiodarone Efficacy and Safety,” Circulation, Vol. 100, 1999, pp. 2025-2034. doi:10.1161/01.CIR.100.19.2025
[2] L. M. Letelier, K. Udol, J. Ena, B. Weaver and G. H. Guyatt, “Effectiveness of Amiodarone for Conversion of Atrial Fibrillation to Sinus Rhythm: A Meta-Analysis,” Archives of Internal Medicine, Vol. 163, No. 7, 2003, pp. 777-785. doi:10.1001/archinte.163.7.777
[3] M. D. Freedman and J. C. Somberg, “Pharmacology and Pharmacokinetics of Amiodarone,” Journal of Clinical Pharmacology, Vol. 31, 1991, pp. 1061-1069.
[4] I. Kodama, K. Kamiya and J. Toyama, “Cellular Electropharmacology of Amiodarone,” Cardiovascular Research, Vol. 35, No. 1, 1997, pp. 13-29. doi:10.1016/S0008-6363(97)00114-4
[5] I. Kodama, K. Kamiya, H. Honjo and J. Toyama, “Acute and Chronic Effects of Amiodarone on Mammalian Ventricular Cells,” Japanese Heart Journal, Vol. 37, No. 5, 1996, pp. 719-730. doi:10.1536/ihj.37.719
[6] F. Forini, G. Nico-lini, S. Balzan, G. M. Ratto, B. Murzi, V. Vanini and G. Iervasi, “Amiodarone Inhibits the 3,5,3'- Triiodothyro-nine-Dependent Increase of Sodium/Potas- sium Adeno-sine Triphosphatase Activity and Concentration in Human Atrial Myocardial Tissue,” Thyroid, Vol. 14, No. 7, 2004, pp. 493-499. doi:10.1089/1050725041517084
[7] H. Yoshida, A. Sugiyama, Y. Satoh, Y. Ishida, M. Yoneyama, K. Ku-giyama and K. Hashimoto, “Comparison of the in Vivo Electrophysiological and Proarrhythmic Effects of Ami-odarone with Those of a Selective Class III Drug, Semati-lide, Using a Canine Chronic Atrioventricular Block Model,” Circulation, Vol. 66, No. 8, 2002, pp. 758-762. doi:10.1253/circj.66.758
[8] M. E. Diaz, H. K. Grahama, S. C. O’Neill, A. W. Trafford and D. A. Eisner, “The Control of Sarcoplasmic Reticulum Ca Content in Cardiac Muscle,” Cell Calcium, Vol. 38, No. 3-4, 2005, pp. 391-396. doi:10.1016/j.ceca.2005.06.017
[9] M. Endoh, “Force-Frequency Relationship in Intact Mammalian Ventricular Myocardium: Physiological and Pathophysi-ological Relevance,” European Journal of Pharmacology, Vol. 500, No. 1-3, 2004, pp. 73-86. doi:10.1016/j.ejphar.2004.07.013
[10] D. V. Vassallo, E. Q. Lima, P. Campagnaro, A. N. Faria and J. G. Mill, “Mechanisms Underlying the Genesis of Post-Extrasystolic Potentiation in Rat Cardiac Muscle,” Brazilian Journal of Medical & Biological Research, Vol. 28, No. 3, 1995, pp. 377-383.
[11] S. N. Wu, A. Y. Shen and T. L. Hwang, “Analysis of Mechanical Restitution and Post-Rest Potentiation in Isolated Rat Atrium,” Chinese Journal of Physiology, Vol. 39, 1996, pp. 23-29.
[12] D. M. Bers, “Calcium Cycling and Signaling in Cardiac Myo-cytes,” Annual Review of Physiology, Vol. 70, 2008, pp. 23-49. doi:10.1146/annurev.physiol.70.113006.100455
[13] J. Mizuno, J. Araki, S. Mohri, H. Minami, Y. Doi, W. Fujinaka, K. Miyaji, T. Kiyooka, Y. Oshima, G. Iribe, M. Hirakawa and H. Suga, “Frank-Starling Mechanism Retains Recirculation Fraction of Myocardial Ca(2+) in the Beating Heart,” Japanese Journal of Physiology, Vol. 51, No. 6, pp. 2001, 733-743.
[14] W. F. Bluhm, M. Meyer, E. A. Swanson and W. H. Dillmann, “Postrest Potentiation of Active Force in Mouse Papillary Muscles Is Greatly Accelerated by Increased Stimulus Frequency,” Annals of New York Academy of Sciences, Vol. 853, 1998, pp. 304-307. doi:10.1111/j.1749-6632.1998.tb08285.x
[15] J. Layland and J. C. Kentish, “Positive Force- and [Ca2+]i-Frequency Relationships in Rat Ventricular Trabeculae at Physio-logical Frequencies,” American Journal of Physiology, Vol. 276, 1999, pp. H9-H18.
[16] D. P. Zankov, W. G. Ding, H. Matsuura and M. Horie, “Open-State Unblock Characterizes Acute Inhibition of I Potassium Current by Amiodarone in Guinea Pig Ventricular Myocytes,” Jour-nal of Cardiovascular Electrophysiology, Vol. 16, No. 3, 2005, pp. 314-322. doi:10.1046/j.1540-8167.2005.40561.x
[17] D. F. Gray, A. S. Mihailidou, P. S. Hansen, K. A. Buhagiar, N. L. Bewick, H. H. Rasmussen and D. W. Whalley, “Ami-odarone Inhibits the Na(+)-K+ Pump in Rabbit Cardiac Myocytes after Acute and Chronic Treatment,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 284, No. 1, 1998, pp. 75-82.
[18] A. D. Pitt, C. Fernandes, N. L. Bewick, P. D. Hemsworth, K. A. Buha-giar, P. S. Hansen, H. H. Rasmussen, L. Delbridge and D.W. Whalley, “Chronic Amiodarone-Induced Inhibition of the Na+-K+ Pump in Rabbit Cardiac Myocytes Is Thy-roid-Dependent: Comparison with Dronedarone,” Cardiovascular Research, Vol. 57, No. 1, 2003, pp. 101-108. doi:10.1016/S0008-6363(02)00650-8
[19] P. Chatelain, L. Meysmans, J. R. Matteazzi, Ph. Beaufort and M. Clinet, “Interaction of the Antiarrhythmic Agents SR 33589 and Amiodarone with the β-Adrenoceptor and Adenylate Cyclase in Rat Heart,” British Journal of Phamocology, Vol. 116, No. 3, 1995, pp. 1949-1956.
[20] V. Drvota, J. H?ggblad, I. Blange, Y. Magnusson and S. Sylvén, “The Effect of Amiodarone on the Beta-Adrenergic Receptor Is Due to a Downregulation of Receptor Protein and Not to a Receptor-Ligand Interaction,” Biochemical and Biophysical Research Communications, Vol. 255, No. 2, 1999, pp. 515-520. doi:10.1006/bbrc.1998.0138
[21] P. Schnabel, F. Mies, C. Maack, S. Rosenkranz, O. Zolk and M. B?hm, “Beneficial Effects of Amiodarone in Heart Failure: Interaction with Beta-Adrenoceptors Rather Than g Proteins,” European Journal of Pharmacology, Vol. 369, No. 3, 1999, pp. 391-394. doi:10.1016/S0014-2999(99)00101-6
[22] H. Tachikawa, M. Kodama, K. Watanabe, T. Takahashi, M. Ma, T. Kashimura, M. Ito, S. Hirono, Y. Okura, K. Kato, H. Hanawa and Y. Aizawa, “Amiodarone Improves Cardiac Sympathetic Nerve Function to Hold Norepinephrine in the Heart, Prevents Left Ventricular Remodeling, and Improves Cardiac Function in Rat Dilated Cardiomyopathy,” Circulation, Vol. 111, No. 7, 2005, pp. 894-899. doi:10.1161/01.CIR.0000155610.49706.D2
[23] X.J. Du, M. D. Esler and A. M. Dart, “Sympatholytic Action of Intravenous Amiodarone in the Rat Heart,” Circulation, Vol. 91, 1995, pp. 462-470. doi:10.1161/01.CIR.91.2.462
[24] J. Curran, M. J. Hin-ton, E. Rios, D. M. Bers and T. R. Shannon, “β-Adrenergic Enhancement of Sarcoplasmic Reticulum Calcium Leak in Cardiac Myocytes Is Mediated by Calcium/Calmodulin-Dependent Protein Kinase,” Circulation Research, Vol. 100, 2007, pp. 391-398. doi:10.1161/01.RES.0000258172.74570.e6
[25] P. Ferrero, M. Said, G. Sánchez, L. Vittone, C. Valverde, P. Donoso, A. Mattiazzi and C. Mundi?a-Weilenmann. “Ca2+/Calmodulin Kinase II Increases Ryanodine Binding and Ca2+-Induced Sarcoplasmic Reticulum Ca2+ Release Kinetics during β-Adrenergic Stimulation,” Journal of Molecular and Cellular Cardiology, Vol. 43, No. 3, 2007, pp. 281-291. doi:10.1016/j.yjmcc.2007.05.022

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.