Two-and Three-Layered Dissolving Microneedles for Transcutaneous Delivery of Model Vaccine Antigen in Rats

DOI: 10.4236/jbnb.2012.33030   PDF   HTML     3,737 Downloads   6,279 Views   Citations


Purpose: Comparison of transcutaneous immunization of ovalbumin (OA) between two-and three-layered dissolving microneedles (MN) in rats. Methods: We prepared 500 μm long two-layered and three-layered dissolving microneedle (2-MN and 3-MN, respectively) arrays from chondroitin sulfate as the base, and OA as the model antigen. The 2-MN containing OA at the acral portion and 3-MN with OA at the second portion were administered to rat skin transcutaneously. As a positive control, OA solution was injected subcutaneously (sc). The OA delivery and diffusion in the rat skin were studied using confocal microscopy with fluorescein-conjugated OA (FL-OA). Results: The formulated positions of OA were 0-155 ± 5 μm for 2-MN and 175 ± 4 – 225 ± 5 μm for 3-MN. The administered doses of OA were 2.2 ± 0.1 μg, 12.0 ± 0.2 μg and 22.0 ± 0.2 μg for 2-MN, 1.8 ± 0.2 μg, 12.6 ± 0.7 μg, and 20.4 ± 0.3 μg for 3-MN, 10 μg, 100 μg and 1000 μg for sc injection. At 4 weeks after the first administration, 3-MN showed about 2.5-7.0 fold and 5.4 fold higher total Ig (G + A + M) antibody than 2-MN and sc injection of the OA solution. Conclusions: The 3-MN, which delivered OA to the epidermis, is a useful drug delivery system for transcutaneous antigen delivery.

Share and Cite:

A. Ikejiri, Y. Ito, S. Naito and K. Takada, "Two-and Three-Layered Dissolving Microneedles for Transcutaneous Delivery of Model Vaccine Antigen in Rats," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 325-334. doi: 10.4236/jbnb.2012.33030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. C. Birchall, “Stratum corneum bypassed or removed,” In: E. Touitou and B. W. Barry Ed Enhancement in Drug Delivery, CRC Press, New York, 2007, pp. 337-351.
[2] M. A. F. Kendall, “Needle-free vaccine injection,” In: M. Schafer-Korting, Ed Drug DelivSery, Handbook of Experimental Pharmacology, Springer Press, Verliag Berlin Heidelberg, 2010, pp. 193–220.
[3] G. Walsh, “Biopharmaceuticals,” West Sussex, Wiley, 2003.
[4] J. F. S. Mann, V. A. Ferro, A. B. Mullen, L. Tetley, M. Mullen, K. C. Carter, J. Alexander and W. H. Stimsan, “Optimisation of a lipid based oral delivery system containing A/Panama influenza hemagglutinin,” Vaccine. Vol. 22, 2004, pp. 2425-2429. doi: 10.1016/j.vaccine.2003.11.067
[5] S. Naito, J. Maeyama, T. Mizukami, M. Takahashi, I. Hamaguchi and K. Yamaguchi, “Transcutaneous immunization by merely prolonging the duration of antigen presence on the skin of mice induces a potent antigen-specific antibody response even in the absence of an adjuvant,” Vaccine. Vol. 25, 2007, pp. 8762–8770. doi: 10.1016/j.vaccine.2007.10.031
[6] B. Barry and A. Williams, “Penetration enhancers,” Advanced Drug Delivery Reviews, Vol. 56, 2004, pp.603-618. doi: 10.1016/j.addr.2003.10.025
[7] G. Cevc, “Lipid vesicles and other colloids as drug carriers on the skin,” Advanced Drug Delivery Reviews, Vol. 56, 2004, pp. 675-711. doi: 10.1016/j.addr.2003.10.028
[8] L. V. Preat and R. Vanbever, “Skin electroporation for transdermal and topical delivery,” Advanced Drug Delivery Reviews, Vol.56, 2004, pp.659-674. doi: 10.1016/j.addr.2003.10.027
[9] S. Mitragotri and J. Kost, “Low-frequency sonophoresis: a review,” Advanced Drug Delivery Reviews, Vol. 56, 2004, pp. 589-601. doi: 10.1016/j.addr.2003.10.024
[10] A. Doukas, “Transdermal delivery with a pressure wave,” Advanced Drug Delivery Reviews, Vol. 56, 2004, pp. 559-579. doi: 10.1016/j.addr.2003.10.031
[11] S. A. Coulman, A. Anstey, C. Gately, A. Morrissey, P. McLoughlin, C. Allender and J. C. Birchall, “Microneedle mediated delivery of nanoparticles into human skin,” International Journal of Pharmaceutical, Vol. 366, 2009, pp. 190-200. doi: 10.1016/j.ijpharm.2008.08.040
[12] Q. Zhu, V. G. Zarnitsyn, L. Ye, Z. Wen, Y. Gao, L. Pan, I. Skountzou, H. S. Gill, M. R. Prausnitz, C. Yang and R. W. Compans, “Immunization by vaccine-coated microneedle arrays protects against influenza virus challenge,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, 2009, pp. 7968-7973. doi: 10.1073/pnas.0812652106
[13] J. A. Matriano, M. Cormier, J. Johnson, W. A. Young, M. Buttery, Nyam K and P. E. Daddona, “Macroflux○R microprojection array patch technology: A new and efficient approach for intracutaneous immunization,” Pharmaceutical Research, Vol. 19, 2002, pp. 63-70. doi: 10.1023/A:1013607400040
[14] Y. Ito, E. Hagiwara, A. Saeki, N. Sugioka and K. Takada, “Feasibility of microneedles for percutaneous absorption of insulin,” European Journal of Pharmaceutical Sciences, Vol. 29, 2006, pp.82-88. doi: 10.1016/j.ejps.2006.05.011
[15] Y. Ito, A. Murakami, T. Maeda, N. Sugioka and K. Takada, “Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats,” Intarnational Journal and Pharmaceutics, Vol. 349, 2008, pp. 124-129. doi: 10.1016/j.ijpharm.2007.07.036
[16] Y. Ito, Y. Ohashi, K. K. Shiroyama, N. Sugioka and K. Takada, “Self-dissolving micropiles for the percutaneous absorption of human growth hormone in rats,” Biological and Pharmaceutical Bulletin, Vol. 31, 2008, pp.1631-1633. doi: 10.1248/bpb.31.1631
[17] Y. Ito, J. Yoshimitsu, K. Shiroyama, N. Sugioka and K. Takada, “Self-dissolving microneedles for the percutaneous absorption of EPO in mice,” Journal of Drug Targeteting, Vol. 14, 2006, pp. 255-262. doi: 10.1080/10611860600785080
[18] Y. Ito, A. Saeki, K. Shiroyama, N. Sugioka and K. Takada, “Percutaneous absorption of interferon-α by self-dissolving micropiles,” Journal of Drug Targeteting, Vol. 16, 2008, pp. 243-249. doi: 10.1080/10611860801902575
[19] Y. Ito, Y. Ohashi, A. Saeki, N. Sugioka and K. Takada, “Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs,” Chemical and Pharmaceutical Bulletin, Vol. 56, 2008, pp. 243-246. doi: 10.1248/cpb.56.243
[20] K. Takada, “Microfabrication derived DDS: From batch to individual production,” Drug Discoveries and Therapeutics, Vol. 2, 2008, pp. 140-155.
[21] Y. Ito, R. Hasegawa, K. Fukushima, N. Sugioka and K. Takada, “Self-dissolving microarray chip as percutaneous delivery system of protein drug,” Biological and Pharmaceutical Bulletin, Vol. 33, 2010, pp. 683-690. doi: 10.1248/bpb.33.683
[22] K. Fukushima, A. Ise, H. Morita, R. Hasegawa, Y. Ito, N. Sugioka and K. Takada, “Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats,” Pharmaceutical Research, Vol. 28, 2011, pp. 7-21. doi: 10.1007/s11095-010-0097-7
[23] G. Rozis, S. Silva, A. Benlahrech, T. Papagatsias, J. Harris, F. Gotch, G. Dickson and S. Patterson, “Langerhans cells are more efficiently tranduced expressing either group C or B fibre protein: Implications for mucosal vaccines,” European Journal of Immunology, Vol. 35, 2005, pp. 2617-2626. doi: 10.1002/eji.200425939
[24] V. Flacher ,C. H. Tripp, P. Stoitzner, Haid B, Ebner S, B. D. Frari, F. Koch, C. G. Park, R. M. Steinman, J. Idoyaga and N. Romani, “Epidermal Langerhans cells rapidly capture and present antigens from C-type Lectin-targeting antibodies deposited in the dermis,” Journal Investigative Dermatology, Vol. 130, 2010, pp. 755-762. doi: 10.1038/jid.2009.343
[25] M. Pearton, S. Kang, J. Song, Y. Kim, F. Quan, A. Anstey, M. Ivory, M. R. Prausnitz, R. W. Compans and J. C. Birchall, “Influenza virus-like particles coated onto micronedles can elicit stimulatory effects on Langerhans cells in human skin,” Vaccine, Vol. 28, 2010, pp. 6104-6113. doi: 10.1016/j.vaccine.2010.05.055
[26] K. Furmanov, M. Elnekave, D. Lehmann, B. E. Clausen, D. N. Kotton and H. Hovav, “The role of skin-derived dendric cells in CD8+ T cell priming following immunization with lentivectors,” The Journal of Immunology, Vol. 184, 2010, pp. 4889-4897. doi: 10.4049/jimmunol.0903062
[27] N. Romani, M. Thurnher, J. Idoyaga, R. M. Steinman and V. Flacher, “Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy,” Immunology and Cell Biology, Vol. 88, 2010, pp. 424-430. doi: 10.1038/icb.2010.39
[28] T. Jakob and M. C. Udey, “Ep-idermal Langerhans cells: From neurons to nature’s adjuvants,” Advanced Dermatology, Vol.14, 1999, pp. 209-258.
[29] R. C. Yu, D. Abrams, M. Alaibac and A. C. Chu, “Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy,” British Journal of Dermatology, Vol. 131, 1994, pp. 843-848. doi: 10.1111/j.1365-2133.1994.tb08587.x
[30] G. Murphy, D. Messadi, E. Fonferko and W. Hancock, “Phenotypic transformation of macrophages to Langerhans cells in the skin,” American Journal of Pathology, Vol. 123, 1986, pp. 401-406.
[31] A. N. Monteiro-Riviere, G. D. Bristol, O. T. Manning, A. R. Roger and E. J. Riviere, “Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five custaneous sites in nine species,” Journal Investigative Dermatology, Vol. 95, 1990, pp. 582-586. doi: 10.1111/1523-1747.ep12505567
[32] J. Bauer, A. F. Bahmer, J. Worl, W. Neuhuber, G. Schuler and M. Fartasch, “A strikingly constant ration exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical dissector method and the confocal laser scanning microscope,” Journal Investigative Dermatology, Vol. 116, 2001, pp. 313-318. doi: 10.1046/j.1523-1747.2001.01247.x
[33] L. M. J. Knippels, A. H. Penninks, M. Meeteren and G. F. Houben, “Humoral cellular immune responses in different rat strains on oral exposure to ovalbumin,” Food and Chemical Toxicology, Vol. 37, 1999, pp. 881-888. doi: 10.1016/S0278-6915(99)00064-2
[34] T. K. Bhattacharyya, “Skin aging in animal models: Histological perspective,” In: M. A. Farage, K. W. Miller and H. I. Maibach, Ed Textbook of Aging Skin, Springer Press, Verliag Berlin Heidelberg, 2010, pp. 5-12. doi: 10.1007/978-3-540-89656-2_1
[35] L. B. S. Gerlinck, B. J. F Bemt, W. A. F Marijt, A. F. Biji, L. G. Visser, H. A. Cats, G. F. Rimmelzwaan and F. P. Kroon, “Intradermal influenza vaccination in immunocompromized patients is immunogenic and feasible,” Vaccine, Vol. 27, 2009, pp. 2469-2474. doi: 10.1016/j.vaccine.2009.02.053
[36] Y. Ito, T. Yamazaki, N. Sugioka and K. Takada, “Self-dissolving micropile array tips for percutaneous administration of insulin,” Journal of Materials Science: Materials in Medicine, Vol. 21, 2010, pp. 835-841. doi: 10.1007/s10856-009-3923-x
[37] J. P. Caspers, W. G. Lucassen, A. H. Bruining and J. G. Puppels, “Automated depth-scanning confocal raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” Journal of Raman Spectroscopy, Vol. 31, 2000, pp. 813-838. doi: 10.1002/1097-4555(200008/09)31:8/9<813::AID-JRS573>3.0.CO;2-7
[38] G. Widera, J. Johnson, L. Kim, L. Libiran, K. Nyam, P. E. Daddona and M. Cormier, “Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system,” Vaccine, Vol. 24, 2006, pp. 1653-1664. doi: 10.1016/j.vaccine.2005.09.049

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.