Green Process for Impregnation of Silver Nanoparticles into Microcrystalline Cellulose and Their Antimicrobial Bionanocomposite Films

DOI: 10.4236/jbnb.2012.33035   PDF   HTML   XML   7,858 Downloads   13,740 Views   Citations


A novel greener method to impregnate silver nanoparticles (AgNPs) into microcrystalline cellulose (MCC) by curry leaf (Murraya koenigii) extract mediated biological process is presented. The active reduction of silver ions by curry leaf extract was explored for the in situ impregnation AgNPs into MCC. Transmission electron microscopy (TEM) analyses of MCC coated with AgNPs showed the formation of silver particle sizes in the range of 10-25 nm and have a spherical shape. Further the, EDS analysis of MCC/Ag nanocomposite confirms the formation of Ag structure on microcrystalline cellulose. Solvent casting of poly(lactic-acid) was used to produce composite films containing silver impregnated MCC aiming for antimicrobial applications.

Share and Cite:

S. Vivekanandhan, L. Christensen, M. Misra and A. Kumar Mohanty, "Green Process for Impregnation of Silver Nanoparticles into Microcrystalline Cellulose and Their Antimicrobial Bionanocomposite Films," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 371-376. doi: 10.4236/jbnb.2012.33035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. W. Cao, R. Jin and C. A. Mirkin, “DNA-Modified Core-Shell Ag/Au Nanoparticles”, Journal of American Chemical Society, Vol. 123, 2001, pp. 7961-7962. doi:10.1021/ja011342n
[2] J. Gong, Q. Chen, M. R. Lian, N. C. Liu, R. G. Stevenson and F. Adami, “Micro-machined Nanocrystalline Silver Doped SnO2 H2S sensor”, Sensors and Actuators B: Chemical, Vol. 114, No. 30, 2006, pp. 32-39. doi:10.1016/j.snb.2005.04.035
[3] S. Vivekanandhan, D. Tang, M. Misra and A. K. Mohanty, “Novel Glycine Max (Soybean) Leaf Extract Based Biological Process for the Functionalization of Carbon Nanotubes with Silver Na-noparticles”, Nanoscience and Nanotechnology Letters, Vol. 2, 2010, pp. 240-243. doi:10.1166/nnl.2010.1087
[4] Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljkovic′, V. Djokovic′ and A. S. Luyt, “Fabrication and Characterization of Silver-Polyvinyl Alcohol Nanocomposites”, Chemistry of Materials, Vol. 15, 2003, pp. 5019-5024. doi:10.1021/cm034505a
[5] T. A. Dankovich and D. G. Gray, “Bactericidal Paper Impregnated with Silver Na-noparticles for Point-of-Use Water Treatment”, Environmental Science and Technology, Vol. 45, 2011, pp. 1992-1998. doi:
[6] G. W. Yang, G. Y. Gao, C. Wang, C. L. Xu and H. L. Li, “Controllable Deposition of Ag Nanoparticles on Carbon Nanotubes as a Catalyst for Hydrazine Oxidation”, Carbon, Vol. 46, No. 5, 2008, pp 747-752. doi:10.1016/j.carbon.2008.01.026
[7] Y. F. Wanga, J. H. Yaoa, G. Jiab and H. Leia, “Optical Prosperities of Ag–ZnO Composition Nanofilm Synthesized by Chemical Bath Deposition”, Acta Physica Polonica A, Vol. 119, 2011, pp. 451- 455.
[8] Y. Lv, H. Liu, Z.Wang, S. Liu, L. Hao, Y. Sang, D. Liu, J. Wang and R. I. Boughton, “Silver nanoparticle-decorated porous ceramic composite for water treatment”, Journal of Membrane Science, Vol. 331, 2009, pp 50–56. doi:10.1016/j.memsci.2009.01.007
[9] K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms”, Journal of the American Chemical Society, Vol. 129, 2007, pp. 1524-1525. doi:10.1021/ja0680820
[10] T. Maneerung, S. Tokura and R. Rujiravanit, “Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing”, Carbohydrate Polymers, Vol. 72, 2008, pp. 43–51. doi:10.1016/j.carbpol.2007.07.025
[11] A. Kumar, P. K. Vemula, P. M. Ajayan and G. John, “Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil”, Nature Materials, Vol. 7, 2008, pp. 236–241. doi:10.1038/nmat2099
[12] M. L. Gulrajani, D. Gupta, S. Periyasamy, S. G. Muthu, “Preparation and Application of Silver Nanoparticles on Silk for Imparting Antimicrobial Properties”, Journal of Applied Polymer Science, Vol. 108, 2008, pp. 614–623. doi: 10.1002/app.27584
[13] K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang and H. G. Kim, “Surface Modification by Silver Coating for Improving Electrochemical Properties of LiFePO4”, Solid State Communications, Vol. 129, 2004, pp. 311–314. doi:10.1016/j.ssc.2003.10.015
[14] M. Chen, Z. Yang, H. Wu, X. Pan, X. Xie and C. Wu, “Antimicrobial Activity and the Mechanism of Silver Nanoparticle Thermosensitive Gel”, International Journal of Nanomedicine, Vol. 6, 2011, pp. 2873–2877. doi:10.2147/IJN.S23945
[15] D. K. Bozanic, S. D. Brankovic, N. Bibic, A. S. Luyt and V. Djokovic, “Silver Nanoparticles Encapsulated in Glycogen Biopolymer: Morphology, Optical and Antimicrobial Properties”, Carbohydrate Polymers, Vol. 83, No. 2, 2011, pp. 883-890. doi:10.1016/j.carbpol.2010.08.070
[16] H. M.C. de Azeredo, “Nanocomposites for Food Packaging Applications”, Food Research International, Vol. 42, 2009, pp. 1240–1253. doi:10.1016/j.foodres.2009.03.019
[17] Z. Akbari, T. Ghomashchi and S. Moghadam, “Improvement in Food Packaging Industry with Biobased Nanocomposites”, International Journal of Food Engineering, Vol. 3, No. 4, 2007, pp.1-24. doi: 10.2202/1556-3758.1120
[18] K. Shameli, M. B. Ahmad, W. Z. W. Yunus, N. A. Ibrahim and M. Darroudi, “Synthesis and Characterization of Silver/Talc Nano-composites Using the Wet Chemical Reduction Method”, International Journal of Nanomedicine, Vol. 5, 2010, pp. 743–751. doi: 10.2147/IJN.S13227
[19] M. A. Busoloab, P. Fernandezb, M. J. Ocioac and J. M. Lagarona, “Novel Silver-Based Nanoclay as an Antimicrobial in Polylactic Acid Food Packaging Coatings”, Food Additives and Contaminants, Vol. 27, No.11, 2010, pp. 1617–1626. doi:10.1080/19440049.2010.506601
[20] Z. Chunyang, X. Jianfeng and H. Junhui, “Controlled In-Situ Synthesis of Silver Nanoparticles in Natural Cellulose Fibers Toward Highly Efficient Antimicrobial Materials”, Journal of Nanoscience and Nanotechnology, Vol. 9, No. 5, 2009, pp. 3067-3074. doi: 10.1166/jnn.2009.212
[21] J. Kim, S. Kwon and E. Ostler, “Antimicrobial Effect of Silver-Impregnated Cellulose: Potential for Antimicrobial Therapy”, Journal of Biological Engineering, Vol. 3, No. 20, 2009, pp. 1-9. doi: 10.1186/1754-1611-3-20.
[22] A. M. Ferraria, S. Boufi, N. Battaglini, A. M. Botelho do Rego, and M. ReiVilar, “Hybrid Systems of Silver Nanoparticles Generated on Cellulose Surfaces”, Langmuir, Vol. 26, No. 3, 2010, pp. 1996–2001. doi: 10.1021/la902477q
[23] I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov and A. Gedanken, “Sonochemical Coating of Silver Nanoparticles on Textile Fabrics (Nylon, Polyester and Cotton) and their Anti-bacterial Activity”, Nanotechnology, Vol. 19, 2008, pp. 245705-245710. doi:10.1088/0957-4484/19/24/245705
[24] S. M. Li, N. Jia, J. F. Zhu, M. G. Ma, F. Xu, B. Wang and R. C. Sun, “Rapid Microwave-Assisted Preparation and Characterization of Cellulose–Silver Nanocomposites” Carbohydrate Polymers, Vol. 83, 2011, pp. 422–429. doi:10.1016/j.carbpol.2010.08.003
[25] R. J.B. Pinto, P. A. A. P. Marques, C. P. Neto, T. Trindade, S. Daina and P. Sadocco, “Antibacterial Activity of Nanocomposites of Silver and Bacterial or Vegetable Cellulosic Fibers”, Acta Biomaterialia, Vol. 5, 2009, pp. 2279–2289. doi:10.1016/j.actbio.2009.02.003
[26] N. Durán, P. D. Marcato, G. I. H. De Souza, O. L. Alves and E. Esposito, “Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment” Journal of Biomedical Nanotechnology, Vol. 3, No. 2, 2007, pp. 203–208. doi:10.1166/jbn.2007.022
[27] S. Ravindra, Y. M. Mohan, N. N. Reddy and K. M. Raju, “Fabrication of Anti-bacterial Cotton Fibres Loaded with Silver Nanoparticles via “Green Approach” ”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 367, No. 1–3, 2010, pp. 31–40. doi:10.1016/j.colsurfa.2010.06.013
[28] S. Vivekanand-han, M. Venkateswarlu, D. Carnahan, M. Misra, A. K. Mohanty and N. Satyanarayana, “Functionalization of single-walled carbon nanotubes with silver nanoparticles using Tecoma stans leaf extract”, Physica E, Vol. 44, No. 7-8, 2012, pp. 1725-1729. doi:10.1016/j.physe.2011.10.013
[29] L. Christensen, S. Vivekanandhan, M. Misra and A. K. Mohanty, “Biosyn-thesis of Silver Nanoparticles Using Murraya koenigii (Curry Leaf): An Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size”, Advanced Materials letters, Vol. 2, No. 6, 2011, pp. 429-434. doi: 10.5185/amlett.2011.4256

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.