Share This Article:

Quantum Electrostatic Shock-Waves in Symmetric Pair-Plasmas

Abstract Full-Text HTML XML Download Download as PDF (Size:368KB) PP. 72-79
DOI: 10.4236/oja.2012.22008    3,643 Downloads   7,985 Views   Citations

ABSTRACT

In this paper, the quantum hydrodynamics (QHD) model is used to study the propagation of small- but finite-amplitude quantum electrostatic shock-wave in an inertial-less symmetric pair (ion) plasma with immobile background positive constituents. The dispersion due to the quantum tunneling and inertial effects as well as dissipation caused by particle collisions leading to the shock-like or double-layer structures are considered. Investigation of both the stationary and traveling-wave solutions to Kortewege-de Veries-Burgers evolution equation show that critical values exist which govern the type of collective plasma structures. Current analysis apply to diverse kind of symmetric plasmas such as laboratory inertially confined or astrophysical pair-ion or electron-positron degenerate plasmas.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Akbari-Moghanjoughi, "Quantum Electrostatic Shock-Waves in Symmetric Pair-Plasmas," Open Journal of Acoustics, Vol. 2 No. 2, 2012, pp. 72-79. doi: 10.4236/oja.2012.22008.

References

[1] M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D. O. Gericke, M. S. Murillo, V. Filinov, V. Fortov and W. Hoyer, “Theory and Simulation of Strong Correlations in Quantum Coulomb Systems,” Journal of Physics A, Vol. 36, No. 22, 2003, pp. 5921-5930. doi:10.1088/0305-4470/36/22/313
[2] G. Manfredi, “How to Model Quantum Plasmas,” Fields Institute Communications, Vol. 46, 2005, pp. 263-287.
[3] A. Markowich, C. Ringhofer and C. Schmeiser, “Semiconductor Equations,” Springer, Vienna, 1990.
[4] D. Bohm and D. Pines, “A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas,” Physical Review, Vol. 92, No. 3, 1953, pp. 609-625.
[5] D. Pines, “A Collective Description of Electron Interactions: IV. Electron Interaction in Metals,” Physical Review, Vol. 92, 1953, p. 609. doi:10.1103/PhysRev.92.626
[6] P. Levine and O. V. Roos, “Plasma Theory of the Many- Electron Atom,” Physical Review, Vol. 125, No. 1, 1962, pp. 207-213. doi:10.1103/PhysRev.125.207
[7] H. Haug and S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors,” World Scientific, Singapore, 2004.
[8] C. Gardner, “The Quantum Hydrodynamic Model for Semiconductor Devices,” SIAM Journal on Applied Mathematics, Vol. 54, No. 2, 1994, pp. 409-427. doi:10.1137/S0036139992240425
[9] L. O. Silva, R. Bingham, J.M. Dawson, J. T. Mendonca and P. K. Shukla, “Neutrino Driven Streaming Instabilities in a Dense Plasma,” Physical Review Letters, Vol. 83, No. 14, 1999, pp. 2703-2706. doi:10.1103/PhysRevLett.83.2703
[10] M. Akbari-Moghanjoughi, “Effects of Ion-Temperature on Propagation of the Large-Amplitude Ion-Acoustic Solitons in Degenerate Electron-Positron-Ion Plasmas,” Physics of Plasmas, Vol. 17, No. 8, 2010, Article ID: 082315. doi:10.1063/1.3480117
[11] M. Akbari-Moghanjoughi, “Propagation and Head-On Collisions of Ion-Acoustic Solitons in a Thomas-Fermi Magnetoplasma: Relativistic Degeneracy Effects,” Physics of Plasmas, Vol. 17, No. 7, 2010. doi:10.1063/1.3449590
[12] R. Sabry, W. M. Moslem, F. Haas, S. Ali and P. K. Shukla, “Nonlinear Structures: Explosive, Soliton, and Shock in a Quantum Electron-Positron-Ion Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID: 122308. doi:10.1063/1.3037265
[13] W. Oohara and R. Hatakeyama, “Pair-Ion Plasma Generation Using Fullerenes,” Physical Review Letters, Vol. 91, No. 20, 2003, Article ID: 205005.
[14] W. Oohara, D. Date and R. Hatakeyama, “Electrostatic Waves in a Paired Fullerene-Ion Plasma,” Physical Review Letters, Vol. 95, No. 10, 2005, Article ID: 175003. doi:10.1103/PhysRevLett.95.175003
[15] W. Oohara and R. Hatakeyama, “Basic Studies of the Generation and Collective Motion of Pair-Ion Plasmas,” Physics of Plasmas, Vol. 14, No. 3, 2007, Article ID: 055704. doi:10.1063/1.2436854
[16] W. F. El-Taibany and M. Waidati, “Nonlinear Quantum Dust Acoustic Waves in Nonuniform Complex Quantum Dusty Plasma,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID: 042302. doi:10.1063/1.2717883
[17] M. Marklund, L. Stenflo, P. K. Shukla and G. Brodin, “Quantum Electrodynamical Effects in Dusty Plasmas,” Physics of Plasmas, Vol. 12, No. 7, 2005, Article ID: 072111. doi:10.1063/1.1960008
[18] F. Haas, L. G. Garcia, J. Goedert and G. Manfredi, “Quantum Ion-Acoustic Waves,” Physics of Plasmas, Vol. 10, No. 10, 2003, p. 3858. doi:10.1063/1.1609446
[19] F. Haas, “A Magnetohydrodynamic Model for Quantum Plasmas,” Physics of Plasmas, Vol. 12, No. 6, 2005, Article ID: 062117. doi:10.1063/1.1939947
[20] N. Shukla, P. K. Shukla, G. Brodin and L. Stenflo, “Ion Streaming Instability in a Quantum Dusty Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 4, 2008, Article ID: 044503. doi:10.1063/1.2909533
[21] W. Masood and A. Mushtaq, “Electron Acoustic Soliton in a Quantum Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 2, 2008, Article ID: 022306. doi:10.1063/1.2841036
[22] P, Chatterjee, K. Roy, S. V. Muniandy and C. S. Wong, “Dressed Soliton in Quantum Dusty Pair-Ion Plasma,” Physics of Plasmas, Vol. 16, No. 11, 2009, Article ID: 112106. doi:10.1063/1.3263695
[23] M. Akbari-Moghanjoughi, “Dressed Electrostatic Solitary Waves in Quantum Dusty Pair Plasmas,” Physics of Plasmas, Vol. 17, No. 5, 2010, Article ID: 052302. doi:10.1063/1.3392289
[24] M. Akbari-Moghanjoughi, “Propagation of Arbitrary- Amplitude Nonlinear Quantum Ion-Acoustic Waves in Electron-Ion Plasmas: Dimensionality Effects,” IEEE Transactions on Plasma Science, Vol. 38, No. 12, 2010, pp. 3336-3341. doi:10.1109/TPS.2010.2083700
[25] M. Akbari-Moghanjoughi, “Propagation and Oblique Collision of Electrostatic Solitary Waves in Quantum Pair-Plasmas,” Physics of Plasmas, Vol. 17, No. 8, 2010, Article ID: 082317. doi:10.1063/1.3480307
[26] M. Akbari-Moghanjoughi, “Double-Wells and Double-Layers in Dusty Fermi-Dirac Plasmas: Comparison with the Semiclassical Thomas-Fermi Counterpart,” Physics of Plasmas, Vol. 17, No. 12, 2010, Article ID: 123709. doi:10.1063/1.3527997
[27] P. K. Shukla and B. Eliasson, “Nonlinear Instability and Dynamics of Polaritons in Quantum Systems,” New Journal of Physics, Vol. 9, No. 98, 2007, p. 98. doi:10.1088/1367-2630/9/4/098
[28] W. Masood, M. Siddiq, S, Nargis and A. M. Mirza, “Propagation and Stability of Quantum Dust-Ion-Acoustic Shock Waves in Planar and Nonplanar Geometry,” Physics of Plasmas, Vol. 16, No. 1, 2009, Article ID: 013705. doi:10.1063/1.3068171
[29] S. A. Khan and Q. Haque, “Electrostatic Nonlinear Structures in Dissipative Electron-Positron-Ion Quantum Plasmas,” Chinese Physics Letters, Vol. 25, 2008, p. 4329. doi:10.1088/0256-307X/25/12/040
[30] W. Masood, A. M. Mirza and M. Hanif, “Ion Acoustic Shock Waves in Electron-Positron-Ion Quantum Plasma,” Physics of Plasmas, Vol. 15, No. 7, 2008, Article ID: 072106. doi:10.1063/1.2949702
[31] A. P. Misra, “Dust Ion-Acoustic Shocks in Quantum Dusty Pair-Ion Plasmas,” Physics of Plasmas, Vol. 16, No. 3, 2009, Article ID: 033702. doi:10.1063/1.3085789
[32] A. Shah and R. Saeed, “Ion Acoustic Shock Waves in a Relativistic Electron-Positron-Ion Plasmas,” Physical Letters A, Vol. 373, No. 45, 2009, pp. 4164-4168. doi:10.1016/j.physleta.2009.09.028
[33] F. Haas, L. G. Garcia, J. Goedert and G. Manfredi, “Quantum Ion-Acoustic Waves,” Physics of Plasmas, Vol. 10, No. 10, 2003, p. 3858. doi:10.1063/1.1609446
[34] H. Washimi and T. Taniuti, “Propagation of Ion-Acoustic Solitary Waves of Small Amplitude,” Physical Review Letters, Vol. 17, No. 19, 1966, pp. 996-998. doi:10.1103/PhysRevLett.17.996
[35] W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations,” American Journal of Physics, Vol. 60, No. 7, 1992, pp. 650. doi:10.1119/1.17120
[36] W. Malfliet, “The Tanh Method: A Tool for Solving Certain Classes of Nonlinear Evolution and Wave Equations,” Journal of Computational and Applied Mathematics, Vol. 164, No. 3, 2004, pp. 529-541. doi:10.1016/S0377-0427(03)00645-9
[37] B. Sahu and R. Roychoudhury, “Travelling Wave Solution of Korteweg-de Vries-Burger’s Equation,” Czechoslovak Journal of Physics, Vol. 53, No. 6, 2003, pp. 517- 527. doi:10.1023/A:1024657626565
[38] S. Ali, W. M. Moslem, P. K. Shukla and R. Schlickeiser, “Linear and Nonlinear Ion-Acoustic Waves in an Unmagnetized Electron-Positron-Ion Quantum Plasma,” Physics of Plasmas, Vol. 14, No. 8, 2007, Article ID: 082307. doi:10.1063/1.2750649
[39] W. M. Moslem, P. K. Shukla, S. Ali and R. Schlickeiser, “Quantum Dust-Acoustic Double Layers,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID: 042107. doi:10.1063/1.2719633
[40] R. Saeed and A. Shah, “Nonlinear Korteweg de Vries Burger Equation for Ion Acoustic Shock Waves in a Weakly Relativistic Electron-Positron-Ion Plasma with Thermal Ions,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID: 032308. doi:10.1063/1.3328805

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.