Mutation screening of muscle development genes in patients with idiopathic clubfoot

Abstract

Background: Congenital idiopathic clubfoot is a very common musculoskeletal birth defect, but with no known etiology. Dietz et al. have shown possible linkage in chromosome 3 and 13 in a large, multigenerational family with congenital idiopathic clubfoot. Current evidence suggests that muscle development is impaired in patients with congenital idiopathic club-foot, therefore we hypothesized that mutations in genes related to muscle development could be associated with this deformity. From the areas identified in the linkage study, candidate genes SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 were selected based upon their presence in skeletal muscle as well as their involvement in muscle development. Methods: The exons and splice sites of the five genes were screened via sequence-based analysis in a group of 24 patients with congenital idiopathic clubfoot. All single nucleotide polymorphisms (SNPs) found were compared to public databases to determine allelic frequency and amino acid modification. Results: While many SNPs were found, none proved to be significantly associated with the phenotype of congenital idiopathic clubfoot. The SNPs found were shown to be common amongst a non-clubfoot population and to follow the allelic frequency of the general population. Conclusions: Based upon these results, SPRY2, RAF1, IQSEC1, LMO7, and UCHL3 are not likely to be the major causes of congenital idiopathic clubfoot. Given the complexity of myogenesis, many other candidate genes remain that could cause defects in the hypaxial musculature that is invariably observed in congenital idiopathic club-foot. Clinical Relevance: This study further identifies genes which are unlikely to be the direct cause of congenital idiopathic clubfoot. It also helps to eliminate suspected genes found within the given bounds of chromosome 3 and 13.

Share and Cite:

Groth, C. , Buffard, V. , Morcuende, J. and Sheffield, V. (2012) Mutation screening of muscle development genes in patients with idiopathic clubfoot. Open Journal of Genetics, 2, 83-87. doi: 10.4236/ojgen.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Engell, V., Damborg, F., Andersen, M., Kyvik, K.O. and Thomsen, K. (2006) Club foot: A twin study. Journal of Bone & Joint Surgery, British Volume, 88, 374-376. doi:10.1302/0301-620X.88B3.16685
[2] Beals, R.K. (1978) Club foot in the Maori: A genetic study of 50 kindreds. The New Zealand Medical Journal, 88, 144-146.
[3] Rebbeck, T.R., Dietz, F.R., Murray, J.C. and Buetow, K.H. (1993) A single-gene explanation for the probability of having idiopathic talipes equinovarus. The American Journal of Human Genetics, 53, 1051-1063.
[4] Yang, H.Y., Chung, C.S. and Nemechek, R.W. (1987) A genetic analysis of clubfoot in Hawaii. Genetic Epidemiology, 4, 299-306. doi:10.1002/gepi.1370040408
[5] Chapman, C., Stott, N.S., Port, R.V. and Nicol, R.O. (2000) Genetics of club foot in Maori and Pacific people. Journal of Medical Genetics, 37, 680-683. doi:10.1136/jmg.37.9.680
[6] Gurnett, C.A., Alaee, F., Kruse, L.M., Desruisseau, D.M., Hecht, J.T., Wise, C.A., et al. (2008) Asymmetric lower- limb malformations in individuals with homeobox PITX1 gene mutation. The American Journal of Human Genetics, 83, 616-622. doi:10.1016/j.ajhg.2008.10.004
[7] Wang, L.L., Fu, W.N., Li, L.J., Li, Z.G., Li, L.Y. and Sun, K.L. (2008) HOXD13 may play a role in idiopathic congenital clubfoot by regulating the expression of FHL1. Cytogenetic and Genome Research, 121, 189-195. doi:10.1159/000138884
[8] Shyy, W., Dietz, F., Dobbs, M.B., Sheffield, V.C. and Morcuende, J.A. (2009) Evaluation of CAND2 and WNT7a as candidate genes for congenital idiopathic clubfoot. Clinical Orthopaedics and Related Research, 467, 1201- 1205. doi:10.1007/s11999-008-0701-x
[9] Hecht, J.T., Ester, A., Scott, A., Wise, C.A., Iovannisci, D.M., Lammer, E.J., et al. (2007) NAT2 variation and idiopathic talipes equinovarus (clubfoot). American Journal of Medical Genetics A, 143A, 2285-2291. doi:10.1002/ajmg.a.31927
[10] Ester, A.R., Tyerman, G., Wise, C.A., Blanton, S.H. and Hecht, J.T. (2007) Apoptotic gene analysis in idiopathic Talipes equinovarus (clubfoot). Clinical Orthopaedics and Related Research, 462, 32-37. doi:10.1097/BLO.0b013e318073c2d9
[11] Liu, L.Y., Jin, C.L., Cao, D.H., Zhao, N., Lin, C.K. and Sun, K.L. (2007) Analysis of association between COL9A1 gene and idiopathic congenital Talipes equinovarus. Hereditas, 29, 427-432. doi:10.1360/yc-007-0427
[12] Dietz, F.R., Cole, W.G., Tosi, L.L., Carroll, N.C., Werner, R.D., Comstock, D., et al. (2005) A search for the gene(s) predisposing to idiopathic clubfoot. Clinical Genetics, 67, 361-362. doi:10.1111/j.1399-0004.2005.00407.x
[13] Ippolito, E., De Maio, F., Mancini, F., Bellini, D. and Orefice, A. (2009) Leg muscle atrophy in idiopathic congenital clubfoot: Is it primitive or acquired? Journal of Children’s Orthopaedics, 3, 171-178. doi:10.1007/s11832-009-0179-4
[14] Ippolito, E. and Ponseti, I.V. (1980) Congenital club foot in the human fetus. A histological study. Journal of Bone and Joint Surgery, 62, 8-22.
[15] Poon, R., Li, C. and Alman, B.A. (2009) Beta-catenin mediates soft tissue contracture in clubfoot. Clinical Orthopaedics and Related Research, 467, 1180-1185. doi:10.1007/s11999-008-0692-7
[16] Isaacs, H., Handelsman, J.E., Badenhorst, M. and Pickering A. (1977) The muscles in club foot- A histological, histochemical and electron microscopic study. Journal of Bone & Joint Surgery, British Volume, 59-B, 465-472.
[17] Fukuhara, K., Schollmeier, G. and Uhthoff, H.K. (1994) The pathogenesis of club foot. A histomorphometric and immunohistochemical study of fetuses. Journal of Bone & Joint Surgery, British Volume, 76, 450-457.
[18] Handelsman, J.E. and Badalamente, M.A. (1981) Neuro-muscular studies in clubfoot. Journal of Pediatric Orthopaedics, 1, 23-32. doi:10.1097/01241398-198101010-00004
[19] Aoki, T., Okada, N., Ishida, M., Yogosawa, S., Makino, Y. and Tamura, T.A. (1999) TIP120B: A novel TIP120- family protein that is expressed specifically in muscle tissues. Biochemical and Biophysical Research Commu- nications, 261, 911-916. doi:10.1006/bbrc.1999.1147
[20] Gosztonyi, G., Dorfmüller-Küchlin, S., Sparmann, M. and Eisenschenk, A. (1989) Morphometric study of muscle in congenital idiopathic club foot. Pathology-Research and Practice, 185, 790-794.
[21] Martinsson, T., Oldfors, A., Darin, N., Berg, K., Tajshar- ghi, H., Kyllerman, M., et al. (2000) Autosomal dominant myopathy: Missense mutation (Glu-706 -> Lys) in the myosin heavy chain IIa gene. Proceedings of the National Academy of Sciences, 97, 14614-14619. doi:10.1073/pnas.250289597
[22] Veugelers, M., Bressan, M., McDermott, D.A., Were- mowicz, S., Morton, C.C., Mabry, C.C., et al. (2007) Mutation of perinatal myosin heavy chain associated with a Carney complex variant. The New England Journal of Medicine, 351, 460-469. doi:10.1056/NEJMoa040584
[23] Toydemir, R.M., Rutherford, A., Whitby, F.G., Jorde, L.B., Carey, J.C. and Bamshad, M.J. (2006) Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Nature Genetics, 38, 561-565. doi:10.1038/ng1775
[24] Laziz, I., Armand, A.S., Pariset, C., Lecolle, S., Della Gaspera, B., Charbonnier, F., et al. (2007) Sprouty gene expression is regulated by nerve and FGF6 during regeneration of mouse muscles. Growth Factors, 25, 151-159. doi:10.1080/08977190701723166
[25] De Alvaro, C., Martinez, N., Rojas, J.M. and Lorenzo, M. (2005) Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Molecular Biology of the Cell, 16, 4454-4461. doi:10.1091/mbc.E05-05-0419
[26] Garcia, R., Grindlay, J., Rath, O., Fee, F. and Kolch, W. (2009) Regulation of human myoblast differentiation by PEBP4. EMBO Reports, 10, 278-284. doi:10.1038/embor.2009.4
[27] Gredinger, E., Gerber, A.N., Tamir, Y., Tapscott, S.J. and Bengal, E. (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. The Journal of Biological Chemistry, 273, 10436-10444. doi:10.1074/jbc.273.17.10436
[28] Pajcini, K.V., Pomerantz, J.H., Alkan, O., Doyonnas, R., and Blau, H.M. (2008) Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. The Journal of Cell Biology, 180, 1005-1019. doi:10.1083/jcb.200707191
[29] Holaska, J.M., Rais-Bahrami, S. and Wilson, K.L. (2006) Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Human Molecular Genetics, 15, 3459-3472. doi:10.1093/hmg/ddl423
[30] Semenova, E., Wang, X., Jablonski, M.M., Levorese, J. and Tilghman, S.M. (2003) An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Human Molecular Genetics, 12, 1301-1312. doi:10.1093/hmg/ddg140
[31] Sambrook, J., Fritsch, F. and Maniatis, T. (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York.
[32] Keret, D., Ezra, E., Lokiec, F., Hayek, S., Segev, E. and Wientroub, S. (2002) Efficacy of prenatal ultrasonography in confirmed club foot. Journal of Bone & Joint Surgery, British Volume, 84, 1015-1019. doi:10.1302/0301-620X.84B7.12689
[33] Cooper, D.M. and Dietz, F.R. (1995) Treatment of congenital idiopathic clubfoot. A thirty-year follow-up note. Journal of Bone and Joint Surgery, 77, 1477-1489.
[34] Morcuende, J.A., Dolan, L.A., Dietz, F.R. and Ponseti, I.V. (2004) Radical reduction in the rate of extensive corrective surgery for clubfoot using the Ponseti method. Pediatrics, 113, 376-380. doi:10.1542/peds.113.2.376

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.