Monitoring of Net Primary Production in California Rangelands Using Landsat and MODIS Satellite Remote Sensing


In this study, we present results from the CASA (Carnegie-Ames-Stanford Approach) model to estimate net primary production (NPP) in grasslands under different management (ranching versus unmanaged) on the Central Coast of California. The latest model version called CASA Express has been designed to estimate monthly patterns in carbon fixation and plant biomass production using moderate spatial resolution (30 m to 250 m) satellite image data of surface vegetation characteristics. Landsat imagery with 30 m resolution was adjusted by contemporaneous Moderate Resolution Imaging Spectroradiometer (MODIS) data to calibrate the model based on previous CASA research. Results showed annual NPP predictions of between 300 - 450 grams C per square meter for coastal rangeland sites. Irrigation increased the predicted NPP carbon flux of grazed lands by 59 grams C per square meter annually compared to unmanaged grasslands. Low intensity grazing activity appeared to promote higher grass regrowth until June, compared to the ungrazed grassland sites. These modeling methods were shown to be successful in capturing the differing seasonal growing cycles of rangeland forage production across the area of individual ranch properties.

Share and Cite:

S. Li, C. Potter and C. Hiatt, "Monitoring of Net Primary Production in California Rangelands Using Landsat and MODIS Satellite Remote Sensing," Natural Resources, Vol. 3 No. 2, 2012, pp. 56-65. doi: 10.4236/nr.2012.32009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. W. Bartolome, M. C. Stroud and H. F. Heady, “Influence of Natural Mulch on Forage Production on Differing California Annual Range Sites,” Journal of Range Management, Vol. 33, No. 1, 1980, pp. 4-8.
[2] J. W. Bartolome, W. E. Frost, N. K. McDougald and M. Connor, “California Guidelines for Residual Dry Matter (RDM) Management on Coastal and Foothill Annual Rangelands,” University of California, Division of Agriculture and Natural Resources, Vol. 8092, 2002, 8p.
[3] H. F. Heady, T. C. Foin, M .M. Hektner, D. W. Taylor, M. G. Barbour and W. J. Barry, “Coastal Prairie and Northern Coastal Scrub,” Terrestrial Vegetation of California, California Native Plant Society Special Publication, 2nd Edition, Sacramento, 1988, pp. 733-760.
[4] J. C. Hickman, “The Jepson Manual: Higher Plants of California,” University of California Press, Berkeley, 1993.
[5] L. T. Burcham, “California Range Land: An Historico-Ecological Study of the Range Resources in California,” Center for Archaeological Research at Davis, University of California, Berkeley, 1957.
[6] S. M. Adler-Golden, M. W. Matthew, L. S. Bernstein, R. Y. Levine, A. Berk, S. C. Richtsmeier, P. K. Acharya, G. P. Anderson, J. W. Felde, J. A. Gardner, M. L. Hoke, L. S. Jeong, B. Pukall, A. J. Ratkowski and H. K. Burke, “Atmospheric Correction for Short-Wave Spectral Imagery Based on MODTRAN4,” Summaries of the Eighth Annual JPL Earth Science Workshop, Vol. 3753, No. 7, 1999, pp. 61-69.
[7] R. E. Burgan and R. A. Hartford, “Monitoring Vegetation Greenness with Satellite Data,” US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, 1993.
[8] J. B. Campbell, “Introduction to Remote Sensing,” 2nd Edition, The Guilford Press, New York City, 1996.
[9] J. W. Rouse, R. H. Haas, J. A. Schell and D. W. Deering, “Monitoring Vegetation Systems in the Great Plains with ERTS,” 3rd ERTS Symposium, NASA SP-351, Vol. 1, 1993, pp. 309-317.
[10] C. J. Tucker, “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation,” Remote Sensing of Environment, Vol. 8, No. 2, 1979, pp. 127-150. doi:10.1016/0034-4257(79)90013-0
[11] C. S. Potter, J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney and S. A. Klooster, “Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data,” Global Biogeochemical Cycles, Vol. 7, No. 4, 1993, pp. 811-841. doi:10.1029/93GB02725
[12] Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), “MODIS Subsetted Land products,” 2011.
[13] A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao and L. G. Ferreira, “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices,” Remote Sensing of Environment, Vol. 83, No. 1-2, 2002, pp. 195-213. doi:10.1016/S0034-4257(02)00096-2
[14] A. F. Rahma, D. A. Sims, V. D. Cordova and B. Z. El-Masri, “Potential of MODIS EVI and Surface Temperature for Directly Estimating Per-Pixel Ecosystem C Fluxes,” Geophysical Research Letters, Vol. 32, 2005, pp. L19404. doi:10.1029/2005GL024127
[15] X. M. Xiao, Q. Y. Zhang, B. Braswell, S. Urbanski, S. Boles, S. Wofsy, B. Moore III and D. Ojima, “Modeling Gross Primary Production of Temperate Deciduous Broadleaf Forest Using Satellite Images and Climate Data,” Remote Sensing of Environment, Vol. 91, No. 2, 2004, pp. 256-270. doi:10.1016/j.rse.2004.03.010
[16] C. Potter, P. Gross, V. Genovese and M.-L. Smith, “Net Primary Productivity of Forest Stands in New Hampshire Estimated from Landsat and MODIS Satellite Data,” Carbon Balance and Management, Vol. 2, 2007, p. 9. doi:10.1186/1750-0680-2-9
[17] C. Potter, S. Klooster, A. Huete and V. Genovese, “Terrestrial Carbon Sinks for the United States Predicted from MODIS Satellite Data and Ecosystem Modeling,” Earth Interactions, Vol. 11, No. 13, 2007, pp. 1-21. doi:10.1175/EI228.1
[18] C. Potter, S. Klooster, R. Myneni, V. Genovese, P.-N. Tan and V. Kumar, “Continental-Scale Comparisons of Terrestrial Carbon Sinks Estimated from Satellite Data and Ecosystem Modeling 1982-1998,” Global and Planetary Change, Vol. 39, No. 3-4, 2003, pp. 201-213. doi:10.1016/j.gloplacha.2003.07.001
[19] D. L. Zheng, S. Prince and R. Wright, “Terrestrial Net Primary Production Estimates for 0.5? Grid Cells from Field Observations—A Contribution to Global Biogeochemical Modeling,” Global Change Biology, Vol. 9, No. 1, 2003, pp. 46-64. doi:10.1046/j.1365-2486.2003.00534.x
[20] C. W. Thornthwaite, “An Approach toward Rational Classification of Climate,” Geographic Reviews, Vol. 38, No. 1, 1948, pp. 55-94. doi:10.2307/210739
[21] J. D. Wickham, S. V. Stehman, J. H. Smith and L. Yang, “Thematic Accuracy of the 1992 National Land-Cover Data for the Western United States,” Remote Sensing of Environment, Vol. 91, No. 3-4, 2004, pp. 452-468. doi:10.1016/j.rse.2004.04.002
[22] D. D. Baldocchi, L. K. Xu and N. Kiang, “How Plant Functional-Type, Weather, Seasonal Drought, and Soil Physical Properties Alter Water and Energy Fluxes of an Oak-Savanna and an Annual Grassland,” Agricultural and Forest Meteorology, Vol. 123, No. 1-2, 2004, pp. 13-39. doi:10.1016/j.agrformet.2003.11.006
[23] S. Ma, D. D. Baldocchi, L. K. Xu and T. Hehn, “Inter-Annual Variability in Carbon Dioxide Exchange of an Oak/Grass Savanna and Open Grassland in California,” Agricultural and Forest Meteorology, Vol. 147, 2007, pp. 157-171. doi:10.1016/j.agrformet.2007.07.008
[24] F. A. Heinsch, M. S. Zhao, S. W. Running, J. S. Kimball, and R. R. Nemani, “Evaluation of Remote Sensing Based Terrestrial Productivity from MODIS Using Tower Eddy Flux Network Observations,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 7, 2006, pp. 1908-1924. doi:10.1109/TGRS.2005.853936
[25] C. Daly, M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis and P. P. Pasteris, “Physiographically-Sensitive Mapping of Temperature and Precipitation across the Conterminous United States,” International Journal of Climatology, Vol. 28, No. 15, 2008, pp. 2031-2064. doi:10.1002/joc.1688
[26] R. H. Waring, J. J. Landsberg and M. Williams, “Net Primary Production of Forests: A Constant Fraction of Gross Primary Production?” Tree Physiology, Vol. 18, No. 2, 1998, pp. 129-134. doi:10.1093/treephys/18.2.129
[27] Y. J. Zhang, M. Xu, H. Chen and J. Adams, “Global Pattern of NPP to GPP Ratio Derived from MODIS Data: Effects of Ecosystem Type, Geographical Location and Climate,” Global Ecology and Biogeography, Vol.18, No. 3, 2009, pp. 280-290. doi:10.1111/j.1466-8238.2008.00442.x
[28] Y. J. Kaufman and D. Tanré, “Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 1992, pp. 261-270. doi:10.1109/36.134076
[29] A. R. Huete, “A Soil-Adjusted Vegetation Index (SAVI),” Remote Sensing of Environment, Vol. 25, No. 3, 1988, pp. 295-309. doi:10.1016/0034-4257(88)90106-X
[30] D. D. Briske, J. D. Derner, J. R. Brown, S. D. Fuhlendorf, W. R. Teague, K. M. Havstad, R. L. Gillen, A. J. Ash and W. D. Willms, “Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence,” Rangeland Ecology and Management, Vol. 61, No. 1, 2008, pp. 3-17. doi:10.2111/06-159R.1
[31] S. J. McNaughton, “Grazing as an Optimization Process: Grass-Ungulate Relationships in the Serengeti,” American Naturalist, Vol. 113, No. 5, 1979, pp. 691-703. doi:10.1086/283426
[32] A. J. Belsky, “Does Herbivory Benefit Plants? A Review of the Evidence,” American Naturalist, Vol. 127, No. 6, 1986, pp. 870-892. doi:10.1086/284531
[33] D. G. Milchunas and W. K. Laurenroth, “Quantitative Effects of Grazing on Vegetation and Soils over a Global Range of Environments,” Ecological Monographs, Vol. 63, No. 4, 1993, pp. 327-366. doi:10.2307/2937150
[34] D. A. Frank and S. J. McNaughton, “Evidence for the Promotion of Aboveground Grassland Production by Native Large Herbivores in Yellowstone National Park,” Oecologia, Vol. 96, No. 2, 1993, pp. 157-161. doi:10.1007/BF00317727
[35] G. E. Schuman, J. D. Reeder, J. T. Manley, R. H. Hart and W. A. Manley, “Impact of Grazing Management on the Carbon and Nitrogen Balance of a Mixed-Grass Rangeland,” Ecological Applications, Vol. 9, No. 1, 1999, pp. 65-71. doi:10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
[36] G. F. Hayes and K. D. Holl, “Cattle Grazing Impacts on Annual Forbs and Vegetation Composition of Mesic Grasslands in California,” Conservation Biology, Vol. 17, No. 6, 2003, pp. 1694-1702. doi:10.1111/j.1523-1739.2003.00281.x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.