Formation and Changes of Humic Acid Properties during Peat Humification Process within Ombrotrophic Bogs

Abstract

Studies of the living organic matter humification process are essential for understanding the carbon biogeochemical cycle. The aim of this study is to analyze relations between the properties of peat, peat humic acids and peat humification degree. The analysis has been done on samples of humic substances extracted from peat profiles in two ombrotrophic bogs and relations between peat age, decomposition and humification degree, botanical composition and properties of peat humic acids (elemental, functional composition) were studied. The found variability of peat properties is less significant than differences in the properties of peat-forming living matter, thus revealing the dominant impact of humification process on the properties of peat. Correspondingly, composition of peat humic acids is little affected by differences in the composition of precursor living organic material.

Share and Cite:

O. Purmalis and M. Klavins, "Formation and Changes of Humic Acid Properties during Peat Humification Process within Ombrotrophic Bogs," Open Journal of Soil Science, Vol. 2 No. 2, 2012, pp. 100-110. doi: 10.4236/ojss.2012.22015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] O. Francioso, C. Ciavatta, D. Montecchio, V. Tugnoli, S. Sanchez-Cortes and C. Gessa, “Quantitative Estimation of Peat, Brown Coal and Lignite Humic Acids Using Chemical Parameters, 1H-NMR and DTA Analyses,” Bioresource Technology, Vol. 88, No. 3, 2003, pp. 189-195. doi:10.1016/S0960-8524(03)00004-X
[2] R. A. Houghton, “The Contemporary Carbon Cycle,” In: K. K. Turekian and H. D. Holland, Eds., Treatise on Geochemistry, Vol. 8, 2003, Elsevier, Dordrecht, pp. 473- 513. doi:10.1016/B0-08-043751-6/08168-8
[3] C. Cocozza, V. D’Orazio, T. M. Miano and W. Shotyk, “Characterization of Solid and Aqueous Phases of a Peat Bog Profile Using Molecular Fluorescence Spectroscopy, ESR and FT-IR, and Comparison with Physical Properties,” Organic Geochemistry, Vol. 34, No. 1, 2003, pp. 49-60. doi:10.1016/S0146-6380(02)00208-5
[4] D. Yeloff and D. Mauquoy, “The Influence of Vegetation Composition on Peat Humification: Implications for Paleoclimatic Studies,” Boreas, Vol. 35, No. 4, 2006, pp. 662-673. doi:10.1111/j.1502-3885.2006.tb01172.x
[5] C. Zaccone, T. M. Miano and W. Shotyk, “Qualitative Comparison between Raw Peat and Related Humic Acids in an Ombrotrophic Bog Profile,” Organic Geochemistry, Vol. 38, No. 1, 2007, pp. 151-160. doi:10.1016/j.orggeochem.2006.06.023
[6] P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, T. Pedersen, Y. Rosenthal and K. H. Tan, “Humic Matter in Soil and the Environment: Principles and Controversies,” Marcel Dekker, New York, 2003.
[7] A. Borgmark, “Holocene Climate Variability and Periodicities in South-Central Sweden, as Interpreted from Peat Humification Analysis,” Holocene, Vol. 15, No. 3, 2005, pp. 387-395. doi:10.1191/0959683605hl816rp
[8] R. A. Ghaly, J. B. Pyke, A. E. Ghaly and V. I. Ugursal, “Remediation of Diesel-Oil-Contaminated Soil Using Peat, Energy Sources, A: Recovery, Utilization, and Environmental Effects,” Chemosphere, Vol. 21, 1999, pp. 785-799.
[9] P. A. Brown, S. A. Gill and S. J. Allen, “Metal Removal from Wastewater Using Peat,” Water Resources, Vol. 34, 2000, pp. 3907-3916.
[10] C. J. Caseldine, A. Baker, D. J. Charman and D. Hendon, “A Comparative Study of Optical Properties of NaOH Peat Extracts: Implications for Humification Studies,” Holocene, Vol. 10, No. 5, 2000, pp. 649-658. doi:10.1191/095968300672976760
[11] S. J. Chapman, C. D. Campbell, A. R. Fraser and G. Puri, “FTIR Spectroscopy of Peat in and Bordering Scots Pine Woodland: Relationship with Chemical and Biological Properties,” Soil Biology and Biochemistry, Vol. 33, No. 9, 2001, pp. 1193-1200. doi:10.1016/S0038-0717(01)00023-2
[12] C. Zaccone, C. Cocozza, A. K. Cheburkin, W. Shotyk and T. M. Miano, “Enrichment and Depletion of Major and Trace Elements, and Radionuclides in Ombrotrophic Raw Peat and Corresponding Humic Acids,” Geoderma, Vol. 141, No. 3-4, 2007, pp. 235-246. doi:10.1016/j.geoderma.2007.06.007
[13] H. Anderson and A. Hepburn, “Variation of Humic Substances within Peat Profile,” In: C. H. Fuchsman, Ed., Peat and Water, Academic Press, New York, 1986, pp. 177-194.
[14] C. Zaccone, C. Cocozza, A. K. Cheburkin, W. Shotyk and T. M. Miano, “Distribution of As, Cr, Ni, Rb, Ti and Zr between Peat and Its Humic Fraction along an Undisturbed Ombrotrophic Bog Profile (NW Switzerland),” Applied Geochemistry, Vol. 23, No. 1, 2008, pp. 25-33. doi:10.1016/j.apgeochem.2007.09.002
[15] I. I. Lishtvan and N. T. Korol, “Basic Properties of Peat and Methods for Their Determination,” Nauka I Teknika, Minsk, 1975 (in Russian).
[16] K. H. Tan, “Soil Sampling, Preparation, and Analysis,” Second Edition, Taylor & Francis group, New York, 2005.
[17] S. S. Fong and M. Mohamed, “Chemical Characterization of Humic Substances Occurring in the Peats of Sarawak, Malaysia,” Organic Geochemistry, Vol. 38, No. 6, 2007, pp. 967-976. doi:10.1016/j.orggeochem.2006.12.010
[18] Y. Chen, N. Senesi and M. Schnitzer, “Information Provided on Humic Substances by E4/E6 Ratios,” Soil Science Society of America Journal, Vol. 41, No. 2, 1977, pp. 352-358. doi:10.2136/sssaj1977.03615995004100020037x
[19] J. J. Blackford and F. M. Chambers, “Determining the Degree of Peat Decomposition for Peat-Based Paleoclimatic Studies,” International Peat Journal, Vol. 5, 1993, pp. 7-24.
[20] A. Borgmark, “The Colour of Climate: Changes in Peat Decomposition as a Proxy for Climate Change—A Study of Raised Bogs in South-central Sweden,” PhD Thesis, Stockholm University, Stockholm, 2005.
[21] A. G. Zavarzina, V. V. Demin, T. I. Nifanteva, V. M. Shkinev, T. V. Danilova and B. Y. Spivakov, “Extraction of Humic Acids and Their Fractions in Poly(ethylene glycol)-Based Aqueous Biphasic Systems,” Analytica Chimica Acta, Vol. 452, No. 1, 2002, pp. 95-103. doi:10.1016/S0003-2670(01)01428-3
[22] D. M. B. P. Milori, L. M. Neto, C. Bayer, J. Mielniczuk and V. S. Bagnato, “Humification Degree of Soil Humic Acids Determined by Fluorescence Spectroscopy,” Soil Science, Vol. 167, No. 1, 2002, pp. 739-749. doi:10.1097/00010694-200211000-00004
[23] Y. Chin, G. R. Aiken and K. M. Danielsen, “Binding of Pyrene to Aquatic and Commercial Humic Substances: The Role of Molecular Weight and Aromaticity,” Environmental Science and Technology, Vol. 31, No. 6, 1997, pp. 1630-1635. doi:10.1021/es960404k
[24] C. S. Uyguner, C. Hellriegel, W. Otto and C. K. Larive, “Characterization of Humic Substances: Implications for Trihalomethane Formation,” Analytical and Bioanalytical Chemistry, Vol. 378, No. 6, 2004, pp. 1579-1586. doi:10.1007/s00216-003-2451-7
[25] T. Qiamg, S. Xiaoquan and N. Zheming, “Comparative Characteristic Studies on Soil and Commercial Humic Acids,” Fresenius Journal of Analytical Chemistry, Vol. 347, No. 8-9, 1993, pp. 330-336. doi:10.1007/BF00323816
[26] T. Yamaguchi, H. Hayashi, Y. Yazawa, M. Uomori, F. Yazaki and N. N. Bambalov, “Comparison of Basic Characteristics of Humic Acids Extracted from Peats and Other Sources,” International Peat Journal, Vol. 8, 1998, pp. 87-94.
[27] E. Garnier-Sillam, S. Hariyento and Y. Bourezgui, “Humic Substances in Peats,” Analysis, Vol. 27, No. 5, 1999, pp. 405-408. doi:10.1051/analusis:1999270405
[28] J. ?īre, M. K?avi??, O. Purmalis and V. Melecis, “Experimental Study of Peat Humification Indicators,” Proceedings of Latvian Academy of Sciences, B, Vol. 62, No. 1-2, 2008, pp. 18-27.
[29] D. W. Van Krevelen, “Graphical-Statistical Method for the Study of Structure and Reaction Processes of Coal,” Fuel, Vol. 29, 1950, pp. 269-228.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.