One Approach to Construction of Bilateral Approximations Methods for Solution of Nonlinear Eigenvalue Problems

Abstract

In this paper a new approach to construction of iterative methods of bilateral approximations of eigenvalue is proposed and investigated. The conditions on initial approximation, which ensure the convergence of iterative processes, are obtained.

Share and Cite:

B. Podlevskyi, "One Approach to Construction of Bilateral Approximations Methods for Solution of Nonlinear Eigenvalue Problems," American Journal of Computational Mathematics, Vol. 2 No. 2, 2012, pp. 118-124. doi: 10.4236/ajcm.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Temple, “The Theory of Rayleigh’s Principle as Applied to Continuous Systems,” Proceedings of the Royal Society A, Vol. 119, No. 782, 1928, pp. 276-293. doi:10.1098/rspa.1928.0098
[2] L. Collatz, “Eigenwertaufgaben mit Technischen Anwendungen,” Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1963.
[3] N. J. Lehmann, “Beitrage zur Losung linearer Eigenwert- promleme I,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 29, 1949, pp. 341-356.
[4] N. J. Lehmann, “Beitrage zur Losung Linearer Eigen- wertpromleme II,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 30, No. 1-2, 1950, pp. 1-16. doi:10.1002/zamm.19500300101
[5] A. V. Knyazev, “A Block Algorithm for the Kato-Temple Estimates for the Eigenvalues: Rationale and Application,” In: V. V. Voevodin, Ed., Adjoint Equations and Perturbation Theory in Mathematical Physics, in Russian, DCM AS USSR, Moscow, 1985, pp. 127-135.
[6] A. V. Knyazev, V. I. Lebedev and A. L. Skorokhodov, “Temple-Lehmann Methods in Iterative Algorithms,” in Russian, DCM AS USSR, Moscow, 1985.
[7] B. N. Parlett, “The Symmetric Eignvalue Problem.” Prentice Hall, Englewood Clifs, 1980.
[8] H. Behnke and F. Goerisch, “Inclusions for Eigenvalues of Selfadjoint Problems,” In: J. Herzberger, Ed., Topics in Validated Computations, Elsevier, Amsterdam, 1994, pp. 277-322.
[9] H. Behnke, “The Calculation of Guarateed Bounds for Eigenvalues Using Complementary Variational Principles,” Computing, Vol. 47, No. 1, 1991, pp. 11-27. doi:10.1007/BF02242019
[10] M. G. Marmorino and R. W. Bauernfeind, “Approximate Lower Bound of the Weinstein and Temple Variety,” International Journal of Quantum Chemistry, Vol. 107, No. 6, 2007, pp. 1405-1414. doi:10.1002/qua.21268
[11] A. Weinstein and W. Stenger, “Methods of Intermediate Problems for Eigenvalues. Theory and Ramifications,” Academic Press, New York, 1972.
[12] N. W. Bazley and D. W. Fox, “Truncations in the Method of Intermediate Problems for Lower Bounds to Eigenvalues,” Journal of Research of the National Bureau of Standards Section B, Vol. 65, No. 2, 1961, pp. 105-111.
[13] C. A. Beattie, “An Extension of Aronszajn’s Rule; Slicing the Spectrum for Intermediate Problems,” SIAM Journal on Numerical Analysis, Vol. 24, No. 4, 1987, pp. 828-843. doi:10.1137/0724053
[14] C. A. Beattie and W. M. Greenlee, “Convergence Theorems for Intermediate Problems. II,” Proceedings of the Royal Society of Edinburgh: Section A, Vol. 132, No. 5, 2002, pp. 1057-1072.
[15] S. H. Gould, “Variational Methods for Eigenvalue Problems,” Oxford University Press, London, 1966.
[16] G. Fichera, “Numerical and Quantitative Analysis,” Pitnam Prss, London, 1978.
[17] B. M. Podlevskyi, “On One Approach to Building Bi- lateral Iterative Methods for Solving Nonlinear Equations,” in Ukraine, Report NAS of Ukraine, No. 5, 1998, pp. 37-41.
[18] B. M. Podlevskyi, “About One Way to Build Bilateral Iterative Methods for Solving Nonlinear Equations,” in Ukraine, Physicomechanical Fields, Vol.42, No.2, 1999, pp.17-25.
[19] B. M. Podlevskyi, “One Approach to the Construction of the Bilateral Approximations Methods for the Solution of Nonlinear Equations,” In: G. S. Ladde, N. G. Madhin and M. Sambandham, Eds., Proceeding of Dynamic Systems & Applications IV, Dynamic Publishers Inc., Atlanta, 2004, pp. 542-547.
[20] G. Alefeld and J. Herzberger, “Introduction to Interval Computations,” Academic Press, New York, 1983.
[21] A. Neumaier, “Interval Methods for Systems of Equations,” Cambridge University Press, Cambridge, 1990.
[22] B. M. Podlevskyi, “Numerical Methods and Algorithms for Solving Generalized Spectral Problems,” Ph.D. Thesis, Institute of Mathematics of NASU, Kyiv, 2011.
[23] B. M. Podlevskyi, “On Certain Two-Sided Analogues of Newton’s Method for Solving Nonlinear Eigenvalue Problems,” Comput. Math. Math. Phys., Vol. 47, No.11, 2007, pp. 1745-1755. doi:10.1134/S0965542507110024
[24] Z. Bohte, “Numerical Solution of Some Two-Parameter Eigenvalue Problems,” In: P. Gosar and L. Suklje, Eds., Spominski Zbornik Antona Kuhlja, Slovenian Academy of Science and Art, Ljubljana, 1982, pp. 17-28.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.