Characterization of Electrical Behavior of Ba5HoTi3V7O30 Ceramic Using Impedance Analysis


Polycrystalline sample of Ba5HoTi3V7O30 was prepared using solid-state reaction technique. X-ray structural analysis indicated a single-phase formation with orthorhombic structure. Microstructural study by SEM showed non-uniform distribution of grains over the surface of the sample. Impedance and modulus spectroscopy studies were carried out, as functions of frequency (42 Hz - 5 MHz) and temperature (RT-773K). The Nyquist plots clearly showed the presence of both bulk and grain boundary effect in the compound. Electrical phenomena in the material can appropriately be modeled in terms of an equivalent circuit with R, C and CPE in parallel. The fitting procedure used here allows us to determine the value of R and C with good precision. Here R2 and R3 correspond to the resistance contributed from the grain boundary and bulk, respectively. C1 and C2 correspond to the capacitance contributed from the grain boundary and bulk, respectively. The real part of electrical modulus shows that the material is highly capacitive. The asymmetric peak of the imaginary part of electric modulus M″, predicts a non Debye type relaxation. The activation energy of the compound (calculated both from impedance and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.

Share and Cite:

K. Kathayat, A. Panigrahi, A. Pandey and S. Kar, "Characterization of Electrical Behavior of Ba5HoTi3V7O30 Ceramic Using Impedance Analysis," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 390-397. doi: 10.4236/msa.2012.36056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. R. Neurgaonkar, J. G. Nelson and J. R. Oliver, “Ferroelectric Properties of the Tungsten Bronze M2+6M4+2Nb8O30 Solid Solution Systems,” Materials Research Bulletin, Vol. 27, No. 6, 1992, pp. 677-684. doi:10.1016/0025-5408(92)90074-A
[2] R. R. Neurgaonkar and W. K. Cory, “Progress in Photorefractive Tungsten Bronze Crystals,” Journal of Optical Society of America B, Vol. 3, No. 2, 1986, pp. 274-282. doi:10.1364/JOSAB.3.000274
[3] C. Huang, A. S. Bhalla and R. Guo, “Measurement of Microwave Electro-Optic Coefficient in Sr0.61Ba0.39Nb2O6 Crystal Fiber,” Applied Physics Letters, Vol. 86, No. 21, 2005, Article ID: 211907. doi:10.1063/1.1937997
[4] Y. Yuan, X. M. Chen and Y. J. Wu, “Diffused Ferroelectrics of Ba6Ti2Nb8O30 and Sr6Ti2Nb8O30 with Filled Tungsten-Bronze Structure,” Journal of Applied Physics, Vol. 98, No. 8, 2005, Article ID: 084110. doi:10.1063/1.2120891
[5] M. R. Ranga Raju, R. N. P. Choudhary and H. R. Rukmini, “Diffuse Phase Transition in Sr5RTi3Nb7O30 (R = La, Nd, Sm, Gd and Dy) Ferroelectric Ceramics,” Ferroelectrics, Vol. 325, No. 1, 2005, pp. 25-32. doi:10.1080/00150190500326720
[6] P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Structural and Electrical Properties of Ba5SmTi3V7O30 Ceramics,” Journal of Material Science: Material in Electronics, Vol. 21, No. 2, 2010, pp. 160-167. doi:10.1007/s10854-009-9887-2
[7] M. R. R. Raju and R. N. P. Choudhary, “Structural, Dielectric and Electrical Properties of Sr5RTi3Nb7O30 (R = Gd and Dy) Ceramics,” Materials Letters, Vol. 57, No. 19, 2003, pp. 2980-2987. doi:10.1016/S0167-577X(02)01408-8
[8] P. Ganguly, A. K. Jha and K. L. Deori, “Investigations of Dielectric, Pyroelectric and Electrical Properties of Ba5SmTi3Nb7O30 Ferroelectric Ceramic,” Journal of Alloys and Compounds Volume, Vol. 484, No. 1-2, 2009, pp. 40-44. doi:10.1016/j.jallcom.2009.05.034
[9] V. Hornebecq, C. Elissalde, J. M. Reau and J. Ravez, “Relaxations in New Ferroelectric Tantalates with Tetragonal Tungsten Bronze Structure,” Ferroelectrics, Vol. 238, No. 1, 2000, pp. 57-63. doi:10.1080/00150190008008767
[10] N. K. Singh, R. N. P. Choudhary and A. Panigrahi, “Phase Transition of Ba5SmTi3-xZrxNb7O30 (x = 0, 1, 2, 3) Ferroelectric Ceramics,” Journal of Materials Science Letters, Vol. 20, No. 8, 2001, pp. 707-712. doi:10.1023/A:1010906907512
[11] N. K. Singh, A. Panigrahi and R. N. P. Choudhary, “Structural and Dielectric Properties of Ba5EuTi3-xZrxNb7O30 Reloxor Ferroelectrics,” Materials Letters, Vol. 50, No. 1, 2001, pp. 1-5. doi:10.1016/S0167-577X(00)00402-X
[12] S. R. Shannigrahi, R. N. P. Choudhary, A. Kumar and H. N. Acharya, “Phase Transition in Ba5RTi3Nb7O30 (R = Dy, Sm) Ferroelectric Ceramics,” Journal of Physics and Chemistry of Solids, Vol. 59, No. 5, 1998, pp. 737-742. doi:10.1016/S0022-3697(97)00217-5
[13] P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Effect of Strontium Substitution on Electrical Conduction Properties of Ba5DyTi3V7O30,” The European Physical Journal Applied Physics, Vol. 52, No. 3, 2010, Article ID: 30601. doi:10.1051/epjap/2010146
[14] M. R. R. Raju, R. N. P. Choudhary and S. Ram, “Dielectric and Electrical Properties of Sr5EuCr3Nb7O30 Nanoceramics Prepared Using a Novel Chemical Route,” Physica Status Solidi (B), Vol. 239, No. 2, 2003, pp. 480-489. doi:10.1002/pssb.200301832
[15] P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Structural, Dielectric, Electrical and Piezoelectric Properties of Ba4SrRTi3V7O30 (R = Sm, Dy) Ceramics,” Central European Journal of Physics, Vol. 6, No. 4, 2008, pp. 843-848. doi:10.2478/s11534-008-0112-3
[16] K. Kathayat, A. Panigrahi, A. Pandey and S. Kar, “Effect of Holmium Doping in Ba5RTi3V7O30 (R = Rare Earth Element) Compound,” Integrated Ferroelectrics, Vol. 118, No. 1, 2010, pp. 8-15. doi:10.1080/10584587.2010.489461
[17] E. Wu, ‘‘POWD, an Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.5,” School of Physical sciences, Finders University of South Australia, Bedford Park, Australia.
[18] H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures”, 2nd Edition, John Wiley & Sons Inc., New York, 1974.
[19] J. R. Macdonald, “Impedance Spectroscopy-Emphasizing Solid Materials and Synthesis,” In: J. R. Macdonald, Ed., Theory, John Wiley and Sons Inc., New York, 1987, pp. 13, 77.
[20] P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Structural and Impedance Properties of Ba5DyTi3V7O30”, Journal of Material Science: Material in Electronics, Vol. 20, No. 6, 2009, pp. 565-570. doi:10.1007/s10854-008-9766-2
[21] E. V. Ramana, S. V. Suryanarayana and T. B. Sankaram, “ac Impedance Studies on Ferroelectromagnetic SrBi5?xLaxTi4FeO18 Ceramics”, Material Research Bulletin, Vol. 41, No. 6, 2006, pp. 10-82. doi:10.1016/j.materresbull.2005.11.013.
[22] Z. G. Yi, Q. F. Fang, X. P. Wang and G. G. Zhang, “Dielectric Relaxation Studies on the Submicron Crystalline La2Mo2O9 Oxide-Ion Conductors”, Solid State Ionics, Vol. 160, No. 1-2, 2003, pp. 117-124. doi:10.1016/S0167-2738(03)00143-7
[23] F. Borsa, D. R. Torgeson, S. W. Martin and H. K. Patel, “Relaxation and Fluctuations in Glassy Fast-Ion Conductors: Wide-Frequency-Range NMR and Conductivity Measurements”, Physical Review B, Vol. 46, No. 2, 1992, pp. 795-800. doi:10.1103/PhysRevB.46.795
[24] S. Saha and T. P. Sinha, “Low-Temperature Scaling Behavior of BaFe0.5Nb0.5O3,” Physical Review B, Vol. 65, No. 13, 2002, Article ID: 134103. doi:10.1103/PhysRevB.65.134103
[25] S. Sen, P. Pramanik and R. N. P. Choudhary, “Impedance Spectroscopy Study of the Nanocrystalline Ferroelectric (PbMg)(ZrTi)O3 System,” Applied Physics A: Materials Science & Processing, Vol. 82, No. 3, 2006, pp. 549-557. doi:10.1007/s00339-005-3330-1

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.