Share This Article:

Greater Expansion of IFN-γ CD4+ NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4+ T Cell Counts

Abstract Full-Text HTML Download Download as PDF (Size:295KB) PP. 103-108
DOI: 10.4236/wja.2012.22014    2,673 Downloads   4,763 Views   Citations


Context: Human Natural Killer T cells are T lymphocytes that express an invariant αβ T cells receptors and NK cells receptors. They regulate innate and adaptive immune response but are susceptible to HIV-1 infection. Objective: We compare the frequency and the activity of NKT cells in HIV-1 and HIV-2 infected individuals with CD4+ counts greater than 500/mm3 using flow cytometry after overnight stimulation with phytohemagglutinin (PHA). Results: The frequency of NKT cells was similar between both groups and also to sero-negative control subjects. There were also no significant differences in the proportions of total NKT cells and the CD4+ NKT subset that secreted interferon gamma (IFN-γ) after polyclonal stimulation. However, there was a significantly higher frequency of IFN-γ CD4+ NKT cells in HIV-1-infected compared with HIV-2 infected subjects (p = 0.043). Conclusion: These data suggest there is no relationship between the functional activity of NKT cell subsets and the total NKT cell population in HIV infection. The expansion of IFN-γ CD4+ NKT cells in HIV-1 infection may serve as target for viral infection and may eventually result in their depletion during chronic infection.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. V. Nuvor, H. Whittle, S. Rowland-Jones and A. Jaye, "Greater Expansion of IFN-γ CD4+ NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4+ T Cell Counts," World Journal of AIDS, Vol. 2 No. 2, 2012, pp. 103-108. doi: 10.4236/wja.2012.22014.


[1] M. Kronenberg, “Toward an Understanding of NKT Cell Biology: Progress and Paradoxes,” Annual Review of Immunology, Vol. 23, 2005, pp. 877-900.
[2] M. J. Smyth, K. Y. Thia, S. E. Street, E. Cretney, J. A. Trapani, M. Taniguchi, et al., “Differential Tumor Surveillance by Natural Killer (NK) and NKT Cells,” The Journal of Experimental Medicine, Vol. 191, No. 4, 2000, pp. 661-668. doi:10.1084/jem.191.4.661
[3] S. Vasan and M. Tsuji, “A double-Edged Sword: The Role of NKT Cells in Malaria and HIV Infection and Immunity,” Seminars in Immunology, Vol. 22, No. 2, pp. 87-96. doi:10.1016/j.smim.2009.11.001
[4] P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus and A. Lanzavecchia, “An Invariant V Alpha 24-J Alpha Q/V Beta 11 T cell Receptor Is Expressed in All Individuals by Clonally Expanded CD4-8-T Cells,” The Journal of Experimental Medicine, Vol. 180, No. 3, 1994, pp. 1171-1176. doi:10.1084/jem.180.3.1171
[5] M. Brigl and M. B. Brenner, “CD1: Antigen Presentation and T Cell Function,” Annual Review of Immunology, Vol. 22, 2004, pp. 817-890.
[6] A. Bendelac, N. Killeen, D. R. Littman and R. H. Schwartz, “A Subset of CD4+ Thymocytes Selected by MHC Class I Molecules,” Science, 263, Vol. No. 5154, 1994, pp. 1774-1778. doi:10.1126/science.7907820
[7] A. Motsinger, D. W. Haas, A. K. Stanic, L. Van Kaer, S. Joyce and D. Unutmaz, “CD1d-Restricted Human Natural Killer T Cells Are Highly Susceptible to Human Immunodeficiency Virus 1 Infection,” The Journal of Experimental Medicine, Vol. 195, No. 7, 2002, pp. 869-879. doi:10.1084/jem.20011712
[8] I. Kotsianidis, J. D. Silk, E. Spanoudakis, S. Patterson, A. Almeida, R. R. Schmidt, et al., “Regulation of Hematopoiesis in Vitro and in Vivo by Invariant NKT Cells,” Blood, Vol. 107, No. 8, 2006, pp. 3138-3144. doi:10.1182/blood-2005-07-2804
[9] O. Akbari, P. Stock, E. Meyer, M. Kronenberg, S. Sidobre, T. Nakayama, et al., “Essential Role of NKT Cells Producing IL-4 and IL-13 in the Development of Allergen-Induced Airway Hyperreactivity,” Nature Medicine, Vol. 9, No. 5, 2003, pp. 582-588. doi:10.1038/nm851
[10] C. H. Kim, B. Johnston and E. C. Butcher, “Trafficking Machinery of NKT Cells: Shared and Differential Chemokine Receptor Expression among V Alpha 24(+) V Beta 11(+) NKT Cell Subsets with Distinct Cytokine-Producing Capacity,” Blood, Vol. 100, No. 1, 2002, pp. 11-16. doi:10.1182/blood-2001-12-0196
[11] D. Unutmaz, “NKT Cells and HIV Infection,” Microbes and Infection, Vol. 5, No. 11, 2003, pp. 1041-1047. doi:10.1016/S1286-4579(03)00185-0
[12] C. A. Biron and L. Brossay, “NK Cells and NKT Cells in Innate Defense against Viral Infections,” Current Opinion in Immunology, Vol. 13, No. 4, 2001, pp. 458-464. doi:10.1016/S0952-7915(00)00241-7
[13] J. K. Sandberg, N. M. Fast, E. H. Palacios, G. Fennelly, J. Dobroszycki, P. Palumbo, et al., “Selective Loss of Innate CD4(+) V Alpha 24 Natural Killer T cells in Human Immunodeficiency Virus Infection,” Journal of Virology, Vol. 76, No. 15, 2002, pp. 7528-7534. doi:10.1128/JVI.76.15.7528-7534.2002
[14] H. J. Van Der Vliet, B. M. Von Blomberg, M. D. Hazenberg, N. Nishi, S. A. Otto, B. H. Van Benthem, et al., “Selective Decrease in Circulating V Alpha 24+V Beta 11+ NKT Cells during HIV Type 1 Infection,” The Journal of Immunology, Vol. 168, No. 3, 2002, pp. 1490-1495.
[15] M. Moll, J. Snyder-Cappione, G. Spotts, F. M. Hecht, J. K. Sandberg and D. F. Nixon, “Expansion of CD1d-Restricted NKT Cells in Patients with Primary HIV-1 Infection Treated with Interleukin-2,” Blood, Vol. 107, No. 8, 2006, pp. 3081-3083. doi:10.1182/blood-2005-09-3636
[16] M. W. Mureithi, K. Cohen, R. Moodley, D. Poole, Z. Mncube, A. Kasmar, et al., “Impairment of CD1d-Restricted Natural Killer T Cells in Chronic HIV Type 1 Clade C Infection,” AIDS Research and Human Retroviruses, Vol. 27, No. 5, 2011, pp. 501-509.
[17] S. L. Rowland-Jones and H. C. Whittle, “Out of Africa: What Can We Learn from HIV-2 about Protective Immunity to HIV-1?” Nature Immunology, Vol. 8, No. 4, 2007, pp. 329-331. doi:10.1038/ni0407-329
[18] M. F. Schim Van Der Loeff, S. Jaffar, A. A. Aveika, S. Sabally, T. Corrah, E. Harding, et al., “Mortality of HIV-1, HIV-2 and HIV-1/HIV-2 Dually Infected Patients in a Clinic-Based Cohort in the Gambia,” AIDS, Vol. 16, No. 13, 2002, pp. 1775-1783. doi:10.1097/00002030-200209060-00010
[19] N. Berry, K. Ariyoshi, S. Jaffar, S. Sabally, T. Corrah, R. Tedder, et al., “Low Peripheral Blood Viral HIV-2 RNA in Individuals with High Cd4 Percentage Differentiates HIV-2 from HIV-1 Infection,” Journal of Human Virology, Vol. 1, No. 7, 1998, pp. 457-468.
[20] L. Papagno, C. A. Spina, A. Marchant, M. Salio, N. Rufer, S. Little, et al., “Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection,” PLoS Biology, Vol. 2, No. 2, 2004, p. E20. doi:10.1371/journal.pbio.0020020
[21] V. Natarajan, R. A. Lempicki, I. Sereti, Y. Badralmaa, J. W. Adelsberger, J. A. Metcalf, et al., “Increased Peripheral Expansion of Naive CD4+ T cells in Vivo after IL-2 Treatment of Patients with HIV Infection,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 16, 2002, pp. 10712-10717. doi:10.1073/pnas.162352399
[22] D. I. Godfrey, K. J. Hammond, L. D. Poulton, M. J. Smyth and A. G. Baxter, “NKT Cells: Facts, Functions and Fallacies,” Immunology Today, Vol. 21, No. 11, 2000, pp. 573-583. doi:10.1016/S0167-5699(00)01735-7
[23] J. A. Levy, “The Importance of the Innate Immune System in Controlling HIV Infection and Disease,” Trends in Immunology, Vol. 22, No. 6, 2001, pp. 312-316. doi:10.1016/S1471-4906(01)01925-1
[24] J. P. Moore, A. Trkola and T. Dragic, “Co-Receptors for HIV-1 Entry,” Current Opinion in Immunology, Vol. 9, No. 4, 1997, pp. 551-562. doi:10.1016/S0952-7915(97)80110-0
[25] J. V. Giorgi, R. H. Lyles, J. L. Matud, T. E. Yamashita, J. W. Mellors, L. E. Hultin, et al., “Predictive Value of Immunologic and Virologic Markers after Long or Short Duration of HIV-1 Infection,” Journal of Acquired Immune Deficiency Syndromes, Vol. 29, No. 4, 2002, pp. 346-355.
[26] M. D. Hazenberg, S. A. Otto, B. H. Van Benthem, M. T. Roos, R. A. Coutinho, J. M. Lange, et al., “Persistent Immune Activation in HIV-1 Infection is Associated with Progression to AIDS,” AIDS, Vol. 17, No. 13, 2003, pp. 1881-1888. doi:10.1097/00002030-200309050-00006
[27] G. Eberl and H. R. MacDonald, “Rapid Death and Regeneration of NKT Cells in Anti-Cd3epsilon- or IL-12-Treated Mice: A Major Role for Bone Marrow in NKT Cell Homeostasis,” Immunity, Vol. 9, No. 3, 1998, pp. 345-353. doi:10.1016/S1074-7613(00)80617-2
[28] S. Kojo, Y. Adachi, H. Keino, M. Taniguchi and T. Sumida, “Dysfunction of T Cell Receptor AV24AJ18+, BV11+ Double-Negative Regulatory Natural Killer T Cells in Autoimmune Diseases,” Arthritis & Rheumatism, Vol. 44, No. 5, 2001, pp. 1127-1138. doi:10.1002/1529-0131(200105)44:5<1127::AID-ANR194>3.0.CO;2-W
[29] M. Emoto, Y. Emoto and S. H. Kaufmann, “Inter-leukin-4-Producing CD4+ NK1.1+ TCR Alpha/Beta Intermediate Liver Lymphocytes Are Down-Regulated by Listeria monocytogenes,” European Journal of Immunology, Vol. 25, No. 12, 1995, pp. 3321-3325. doi:10.1002/eji.1830251218
[30] J. A. Hobbs, S. Cho, T. J. Roberts, V. Sriram, J. Zhang, M. Xu, et al., “Selective loss of Natural Killer T Cells by Apoptosis Following Infection with Lymphocytic Choriomeningitis Virus,” Journal of Virology, Vol. 75, No. 22, 2001, pp. 10746-10754. doi:10.1128/JVI.75.22.10746-10754.2001
[31] H. J. Van Der Vliet, M. G. Van Vonderen, J. W. Molling, H. J. Bontkes, M. Reijm, P. Reiss, et al., “Cutting Edge: Rapid Recovery of NKT Cells upon Institution of Highly Active Antiretroviral Therapy for HIV-1 Infection,” The Journal of Immunology, Vol. 177, No. 9, 2006, pp. 5775-5778.
[32] H. J. Van Der Vliet, H. B. Koon, S. C. Yue, B. Uzunparmak, V. Seery, M. A. Gavin, et al., “Effects of the Administration of High-Dose Interleukin-2 on Immunoregulatory Cell Subsets in Patients with Advanced Melanoma and Renal Cell Cancer,” Clinical Cancer Research, Vol. 13, No. 7, 2007, pp. 2100-2108. doi:10.1158/1078-0432.CCR-06-1662
[33] D. Unutmaz, “Reviving the Killers, All You Need Is IL2,” Blood, Vol. 107, 2006, pp. 3021-3022.
[34] N. Rout, J. G. Else, S. Yue, M. Connole, M. A. Exley and A. Kaur, “Paucity of CD4+ Natural Killer T (NKT) Lymphocytes in Sooty Mangabeys Is Associated with Lack of NKT Cell Depletion after SIV Infection,” PLoS One, Vol. 5, No. 3, 2010, p. e9787. doi:10.1371/journal.pone.0009787

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.