Quantum dots induce hot-start effects for Taq-based polymerase chain reaction

Abstract

Decent hot-start effects were here reported in Taq DNA polymerase-based polymerase chain reaction (PCR) when water-soluble CdTe quantum dots (QDs) were employed. The hot-start effects were revealed by the higher amplicon yields and distinguished suppression of nonspecific amplification after pre-incubation of PCR mix with quantum dots between 30°C and 56°C. DNA targets were well amplified even after PCR mixture was pre-incubated 3 hr at 30°C or 1 hr at 50°C. Importantly, the effects of QDs nanoparticles could be reversed by increasing the polymerase concentration, suggesting that there was an interaction between QDs and Taq DNA polymerase. Moreover, control experiment indicated that hot-start effect is not primarily due to the reduced polymerase concentration resulted from the above interaction. This study provided another good start to investigate potential implications of quantum dots in key molecular biology techniques.

Share and Cite:

Sang, F. , Yang, Y. , Wang, H. , Ju, X. and Zhang, Z. (2012) Quantum dots induce hot-start effects for Taq-based polymerase chain reaction. Journal of Biomedical Science and Engineering, 5, 295-301. doi: 10.4236/jbise.2012.56038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chou, Q., Russell, M., Birch, D.E., Raymond, J. and Bloch, W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Research, 20, 1717-1723. doi:10.1093/nar/20.7.1717
[2] D'Aquila, R.T., Bechtel, L.J., Videler, J.A., Eron, J.J., Gorczyca, P. and Kaplan, J.C. (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Research, 19, 3749. doi:10.1093/nar/19.13.3749
[3] Hébert, B., Bergeron, J., Potworowski, E.F. and Tijssen, P. (1993) Increased PCR sensitivity by using paraffin wax as a reaction mix overlay. Molecular and Cellular Probes, 7, 249-252. doi:10.1006/mcpr.1993.1036
[4] Horton, R.M., Hoppe, B.L. and Conti-Tronconi, B.M. (1994) AmpliGrease: “Hot start” PCR using petroleum jelly. Biotechniques, 16, 42-43.
[5] Birch, D.E. (1996) Simplified hot start PCR. Nature, 381, 445-446. doi:10.1038/381445a0
[6] Kellog, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P.D. and Chenchik, A. (1994) Taq- Start antibody: “Hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques, 16, 1134-1137.
[7] Dang, C. and Jayasena, S.D. (1996) Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. Journal of Molecular Biology, 264, 268-278. doi:10.1006/jmbi.1996.0640
[8] Scalice, E.R., Sharkey, D.J. and Daiss, J.L. (1994) Monoclonal antibodies prepared against the DNA polymerase from Thermus aquaticus are potent inhibitors of enzyme activity. Journal of Immunological Methods, 172, 147-163. doi:10.1016/0022-1759(94)90102-3
[9] Kaboev, O.K., Luchkina, L.A., Tretiakov, A.N. and Bahrmand, A.R. (2000) PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucleic Acids Research, 28, 94. doi:10.1093/nar/28.21.e94
[10] Lebedev, A.V., Paul, N., Yee, J., Timoshchuk, V.A., Shum, J.; et al. (2008) Hot start PCR with heat-activetable primers: A novel approach for improved PCR performance. Nucleic Acids Research, 36, 131. doi:10.1093/nar/gkn575
[11] Kong, D., Shen, H., Huang, Y. and Mi, H. (2004) PCR hot-start using duplex primers. Biotechnology Letters, 26, 277-280. doi:10.1023/B:BILE.0000015425.33690.88
[12] Chen, P., Pan, D., Fan, C., Chen, J., Huang, K., Wang, D., et al. (2011) Gold nanoparticles for high-throughput genotyping of long-range haplotypes. Nature Nanotechnology, 6, 639-644. doi:10.1038/nnano.2011.141
[13] Vu, B.V., Litvinov, D., Willson, R.C. (2008) Gold nanoparticle effects in polymerase chain reaction: Favoring of smaller products by polymerase adsorption. Analytical Chemistry, 80, 5462-5467. doi:10.1021/ac8000258
[14] Cui, D.X., Tian, F.R., Yong, K., et al. (2004) Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology, 15, 154-157. doi:10.1088/0957-4484/15/1/030
[15] Yi, C.Q., Fong, C.C., Chen, W.W., et al. (2007) Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases. Nanotechnology, 18, Arti-cle ID: 025102. doi:10.1088/0957-4484/18/2/025102
[16] Cao, X.Y., Chen, J.J., Wen, S.H., Peng, C., Shen, M.W. and Shi, X.Y. (2011) Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. Nanoscale, 3, 1741-1747. doi:10.1039/c0nr00833h
[17] Zhang, Z.Z., Wang, M.C. and An, H.J. (2007) An aqueous suspension of carbon nanopowder enhances the efficiency of polymerase chain reaction. Nanotechnology, 18, Article ID: 355706. doi:10.1088/0957-4484/18/35/355706
[18] Mi, L.J., Wen, Y.Q., Pan, D., Wang, Y.H., Fan, C.H. and Hu, J. (2009) Modulation of DNA polymerases with gold nanoparticles and their applications in hot-start PCR. Small, 5, 2597-2600. doi:10.1002/smll.200901147
[19] Li, J.M., Zhao, M.X., Su, H., Wang, Y.Y., Tan, C.P., Ji, L.N. and Mao, Z.W. (2011) Multifunctional quantumdot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials, 32, 7978-7987. doi:10.1016/j.biomaterials.2011.07.011
[20] Romoser, A.A., Chen, P.L., Berg, J.M., Seabury, C., Ivanov, I., Criscitiello, M.F. and Sayes, C.M. (2011) Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Molecular Immunology, 48, 1349-1359. doi:10.1016/j.molimm.2011.02.009
[21] Ma, L., He, S., Huang, J., Cao, L., Yang, F. and Li, L. (2009) Maximizing specificity and yield of PCR by the quantum dot itself rather than property of the quantum dot surface. Biochimie, 91, 969-973. doi:10.1016/j.biochi.2009.04.020
[22] Wang, L., Zhu, Y., Jiang, .Y, Qiao, R., Zhu, S., Chen, W. and Xu, C. (2009) Effects of quantum dots in polymerase chain reaction. The Journal of Physical Chemistry B, 113, 7637-7641. doi:10.1021/jp902404y
[23] Liang, G.F., Ma, C., Zhu, Y.L., Li, S.C., Shao, Y.H., et al. (2011) Enhanced specificity of multiplex polymerase chain reaction via CdTe quantum dots. Nanoscale Research Letters, 6, 51.
[24] Li, L., Qian, H.F. and Ren, J.R. (2005) Rapid synthesis of highly luminescent CdTe nanocrystals in aqueous phase by microwave irradiation with controllable temperature. Chemical Communication, 4, 528-530. doi:10.1039/b412686f
[25] Zhang, P.D., Li, L., Dong, C.Q., Qian, H.F. and Ren, J.C. (2005) Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Anaytica Chimca Acta, 546, 46-51. doi:10.1016/j.aca.2005.05.034
[26] Dong, C.Q., Guo, J.C., Shao, L.W. and Ren, J.C. (2008) Host-guest interaction of chaperonin GroEL and water soluble CdTe quantum dots and its size selective encapsulation. Chemical Physics and Physical Chemistry, 9, 2245-2251. doi:10.1002/cphc.200800398
[27] Shao, L.W., Dong, C.Q., Sang, F.M. and Ren, J.C. (2009) Studies on Interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectros-copy. Journal of Fluorescence, 19, 151-157. doi:10.1007/s10895-008-0396-0
[28] Sarkar, G., Kapelner, S. and Sommer, S.S. (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Research, 18, 7465. doi:10.1093/nar/18.24.7465
[29] Henke, W., Herdel, K., Jung, K., Schnorr, D. and Loening, S.A. (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Research, 25, 3957-3958. doi:10.1093/nar/25.19.3957
[30] Winship, P.R. (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research, 17, 1266. doi:10.1093/nar/17.3.1266
[31] Rapley, R. (1994) Enhancing PCR amplification and sequencing using DNA-binding proteins. Molecular Bio-technology, 2, 295-298. doi:10.1007/BF02745882
[32] Yasushi, S., Tsutomu, M., Takehiko, S. and Michio, O. (2005) Multiplex PCR: Use of heat-stable Thermus thermophilus RecA protein to minimize non-specific PCR products. Nucleic Acids Research, 33, 126. doi:10.1093/nar/gni111
[33] Kim, Y.J., Ryu, Y.G., Lee, H.S., Cho, Y., Kwon, S.T, Lee, J.H. and Kang, S.G. (2008) Characterization of a dITPase from the hyperthermophilic archaeon Thermo-coccus onnurineus NA1 and its application in PCR amplification. Applied Microbiology and Biotechnology, 79, 571-578. doi:10.1007/s00253-008-1467-5
[34] Zhang, Z., Yang, X., Meng, L., Liu, F., Shen, C. and Yang, W. (2009) Enhanced amplification of GC-rich DNA with two organic reagents. Biotechniques, 47, 775- 778. doi:10.2144/000113203
[35] Chen, J.J., Cao, X.Y., Guo, R., Shen, M.W., Peng, C., Xiao T.Y. and Shi, X.Y. (2012) A highly effective polymerase chain reaction enhancer based on dendrimer-entrapped gold nanoparticles. Analyst, 137, 223-228. doi:10.1039/c1an15816c
[36] Cao, X.Y., Shi, X.Y., Yang, W.C., Zhang, X.D., Fan C.H., and Hu, J. (2009) Enhanced specificity and efficiency of polymerase chain reactions using poly (amidoamine) dendrimers and derivatives. Analyst, 134, 87-92. doi:10.1039/b812176a
[37] Marco, M., Renata, B., Sara, P., Roberto, R. and Isabella, C. (2006) Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. Journal of Molecular Diagnostics, 8, 544-550. doi:10.2353/jmoldx.2006.060058
[38] Lakobashvili, R. and Lapidot, A. (1999) Low temperature cycled PCR protocol for Klenow fragment of DNA polymerase I in the presence of proline. Nucleic Acids Re-search, 27, 1566-1568. doi:10.1093/nar/27.6.1566
[39] Chakrabarti, R. and Schutt, C.E. (2002) Novel sulfoxides facilitate GC-rich template amplification. Biotechniques, 32, 866-874.
[40] Chakrabarti, R. and Schutt, C.E. (2001) The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Research, 29, 2377-2381. doi:10.1093/nar/29.11.2377

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.