The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects


The aim of the present controlled clinical study was to compare the clinical response of grafting superporous hydroxyapatite (HAp) granules to superporous HAp blocks in the treatment of human intrabony periodontal defects. Twenty interproximal intrabony os-seous defects in 20 healthy, non-smoking subjects diagnosed with chronic periodontitis were included in this study. These twenty subjects were randomly assigned to either the HAp granule or the HAp block groups. Clinical and radiographic measurements were determined at baseline, 3, 6, 9 and 12-month post-surgical evaluation time periods. When compared to baseline, the 12-month results indicated both treatment procedures resulted in statistically significant favorable changes in probing depth (mean value: 3.5 mm versus 3.5 mm), clinical attachment level gain (3.2 mm versus 2.3 mm) and radiographic infrabony defect depth decrease (2.9 mm versus 2.5 mm) for HAp granule and HAp block grafting respectively. At 3- and 6-months, the granule group, when compared to the block group, exhibited a statistically significantly more favorable clinical response in clinical attachment level (4.1 mm versus 5.9 mm, p < 0.05 at 3-months; 4.3 mm versus 6.5 mm, p < 0.01 at 6- months). The present study demonstrated that both grafting of superporous HAp granules and grafting of HAp blocks were similarly successful in the treatment of human intrabony periodontal defects.

Share and Cite:

Shirai, Y. , Okuda, K. , Kubota, T. , Wolff, L. and Yoshie, H. (2012) The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects. Open Journal of Stomatology, 2, 81-87. doi: 10.4236/ojst.2012.22015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bucholz, R.W., Carlton, A. and Holmes, R.E. (1987) Hydroxyapatite and tricalcium phosphate bone graft substitute. Orthopedic Clinics of North America, 18, 323-334.
[2] Holmes, R.E., Bucholz, R.W. and Monney, V. (1986) Porous hydroxyapatite as a bone-graft substitute in meta- physeal defects. The Journal of Bone and Joint Surgery, American Volume, 68A, 904-911.
[3] Ishihara, K., Arai, H., Nakabayashi, N., Morita, S. and Furuya, K. (1992) Adhesive bone cement containing hy- droxyapatite particle as bone compatible filler. Journal of Biomedical Materials Research, 26, 937-945. doi:10.1002/jbm.820260708
[4] Ohgushi, H., Goldberg, V.M. and Caplan, A.I. (1989) Repair of bone defects with marrow cells and porous ce- ramic, experiments in rats. Acta Orthope-dica Scandi- navica, 60, 334-339. doi:10.3109/17453678909149289
[5] Radin, S.R. and Du-cheyne, P. (1994) Effect of bioactive ceramic composition and structure on in vitro behavior, III. Porous versus dense ceramics. Journal of Biomedical Materials Research, 28, 1303-1309. doi:10.1002/jbm.820281108
[6] Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y. and Kuboki, Y. (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. Jour- nal of Biochemistry, 121, 317-324. doi:10.1093/oxfordjournals.jbchem.a021589
[7] Yamamura, K., Iwata, H. and Yotsuyanagi, T. (1992) Syn- thesis of antibi-otic-loaded hydroxyapatite beads and in vitro drug release testing. Journal of Biomedical Materi- als Research, 26, 1053-1064.
[8] Redey, S.A., Razzouk, S., Rey, C., Be-mache-Assollant, D., Leroy, G., Nardin, M. and Coumot., G. (1999) Osteo- clast adhesion and activity on synthetic hydrox-yapatite, carbonated hydroxyapatite, and natural calcium car-bonate: relationship to surface energies. Journal of Biomedical Materials Research, 45, 140-147. doi:10.1002/(SICI)1097-4636(199905)45:2<140::AID-JBM9>3.0.CO;2-I
[9] Sakamoto, M., Nakasu, M., Matsumoto, T. and Okihana, H. (2007) Development of superporous hydrox-yapatites and their examination with a culture of primary rat osteoblasts. Journal of Biomedical Materials Research, Part A, 82, 238-242. doi:10.1002/jbm.a.31013
[10] Yoshikawa, H. and Myoui, A. (2005) Bone tissue engi- neering with porous hydroxyapatite ceramics. Journal of Artificial Organs, 8, 131-136. doi:10.1007/s10047-005-0292-1
[11] Agata, H., Asahina, I., Yamazaki, Y., Uchida, M., Shino- hara, Y., Honda, M., Kagami, H. and Ueda, M. (2007) Effective bone engineering with pe-riosteum-derived cell. Journal of Dental Research, 86, 79-83. doi:10.1177/154405910708600113
[12] Matsushima, A., Ko-tobuki, N., Tadokoro, M., Kawate, K., Yajima, H., Takakura, Y. and Ohgushi, H. (2009) In vivo osteogenic capacity of human mesenchymal cells cultured on hydroxyapatite and on be-ta-tricalcium phosphate. Ar- tificial Organs, 33, 474-481. doi:10.1111/j.1525-1594.2009.00749.x
[13] O’Leary, T.J., Drake, R.B. and Naylor, J.E. (1972) The plaque control record. Journal of Periodontology, 43, 38. doi:10.1902/jop.1972.43.1.38
[14] Silness, J. and L?e, H. (1964) Periodontal disease in pregnancy. II. Correlation between oral hygiene and peri- odontal condition. Acta Odontologica Scandinavica, 22, 121-135. 121-135. doi:10.3109/00016356408993968
[15] L?e, H. and Silness, J. (1963) Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontologica Scandinavica, 21, 533-551. doi:10.3109/00016356309011240
[16] Cardaropoli, G. and Leonhardt, A.S. (2002) Enamel matrix proteins in the treatment of deep intrabony defects. Journal of Periodontology, 73, 501-504. doi:10.1902/jop.2002.73.5.501
[17] Okuda, K., Tai, H., Tanabe, K., Suzuki, H., Sato, T., Ka- wase, T., Saito, Y., Wolff, L.F. and Yoshie, H. (2005) Platelet-rich plasma combined with a porous hydroxyapa-tite graft for the treatment of intrabony periodontal de- fects in humans: A comparative controlled clinical study, Journal of Periodontology, 76, 890-898. doi:10.1902/jop.2005.76.6.890
[18] Kawase, T., Okuda, K., Kogami, H., Nakayama, H., Na- gata, M., Sato, T., Wolff, L.F. and Yoshie, H. (2010) Human periosteum-derived cells com-bined with superporous hydroxyapatite blocks used as an os-teogenic regenerative therapy: an animal implantation study using nude mice. Journal of Periodontology, 81, 420-427. doi:10.1902/jop.2009.090523
[19] Ender, A., M?rmann, W.H. and Mehl, A. (2010) Effici- ency of a mathematical model in generating CAD/ CAM- partial crowns with natural tooth morphology. Clinical Oral Investigations, 15, 283-289. doi:10.1007/s00784-010-0384-z
[20] Yamamiya, K., Okuda K., Kawase, T., Hata K., Wolff, L. F. and Yoshie, H. (2008) Tissue-engineered cultured pe- riosteum used with platelet-rich plasma and hydroxyapa- tite in treating human osseous defects. Journal of Perio- dontology, 79, 811-818. doi:10.1902/jop.2008.070518
[21] Okuda, K., Yamamiya, K., Kawase, T., Mizuno, H., Ueda, M. and Yoshie, H. (2009) Treatment of human infrabony periodontal defects by grafting human cultured perio- steum sheets combined with platelet-rich plasma and po- rous hydroxyapatite granules: case series. Journal of the Internatinoal Academy of Periodontology, 11, 206-213.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.