[1]

A. T. Kaczorek, “TwoDimensional Linear Systems,” SpringerVerlag: Berlin, 1985.

[2]

R. N. Bracewell, “TwoDimensional Imaging,” PrenticeHall Signal Processing Series, PrenticeHall, Englewood Cliffs, 1995.

[3]

W.S. Lu and A. Antoniou, “TwoDimensional Digital Filters,” Marcel Dekker, New York, 1992.

[4]

N. K. Bose, “Applied Multidimensional System Theory,” Van Nostrand Reinhold, New York, 1982.

[5]

W. Marszalek, “TwoDimensional StateSpace Discrete Models for Hyperbolic Partial Differential Equations,” Applied Mathematical Modelling, Vol. 8, No. 1, 1984, pp. 1114. doi:10.1016/0307904X(84)901707

[6]

C. Du, L. Xie and C. Zhang, “H_{oo} Control and Robust Stabilization of TwoDimensional Systems in Roesser Models,” Automatica, Vol. 37, No. 2, 2001, pp. 205211.
doi:10.1016/S00051098(00)001552

[7]

J. S.H. Tsai, J. S. Li and L.S. Shieh, “Discretized Quadratic Optimal Control for ContinuousTime TwoDimensional Systems,” IEEE Transactions on Circuits and Systems I, Vol. 49, No. 1, 2002, pp. 116125.

[8]

R. Yang, L. Xie and C. Zhang, “H2 and Mixed H_{2}/H_{oo} Control of TwoDimensional Systems in Roesser Model,” Automatica, Vol. 42, No. 9, 2006, pp. 15071514.
doi:10.1016/j.automatica.2006.04.002

[9]

E. Fornasini and G. Marchesini, “StateSpace Realization Theory of Two Dimensional Filters,” IEEE Transactions on Automatic Control, Vol. 21, No. 4, 1976, pp. 484492.
doi:10.1109/TAC.1976.1101305

[10]

G.D. Hu and M. Liu, “Simple Criteria for Stability of TwoDimensional Linear Systems,” IEEE Transactions on Signal Processing, Vol. 53, No. 12, 2005, pp. 47204723.
doi:10.1109/TSP.2005.859265

[11]

T. Bose and D. A. Trautman, “Two’s Complement Quantization in TwoDimensional StateSpace Digital Filters,” IEEE Transactions on Signal Processing, Vol. 40, No. 10, 1992, pp. 25892592. doi:10.1109/78.157299

[12]

Y. Su and A. Bhaya, “On the BoseTrautman Condition for Stability of TwoDimensional Linear Systems,” IEEE Transactions on Signal Processing, Vol. 46, No. 7, 1998, pp. 20692070. doi:10.1109/78.700987

[13]

T. Bose, “Stability of 2D StateSpace System with Overflow and Quantization,” IEEE Transactions on Circuits and Systems II, Vol. 42, No. 6, 1995, pp. 432434.
doi:10.1109/82.392319

[14]

H. Kar and V. Singh, “Stability of 2D Systems Described by FornasiniMarchesini First Model,” IEEE Transactions on Signal Processing, Vol. 51, No. 6, 2003, pp. 16751676. doi:10.1109/TSP.2003.811237

[15]

T. Zhou, “Stability and Stability Margin for a TwoDimensional System,” IEEE Transactions on Signal Processing, Vol. 54, No. 9, 2006, pp. 34833488.
doi:10.1109/TSP.2006.879300

[16]

R. Thamvichai and T. Bose, “Stability of 2D Periodically Shift Variant Filters,” IEEE Transactions on Circuits and Systems II, Vol. 49, No. 1, 2002, pp. 6164.
doi:10.1109/82.996060

[17]

A. Bhaya, E. Kaszkurewicz and Y. Su, “Stability of Asynchronous TwoDimensional FornasiniMarchesini Dynamical Systems,” Linear Algebra and Its Application, Vol. 332, 2001, pp. 257263.
doi:10.1016/S00243795(00)003177

[18]

D. Henrion, M. Sebek and O. Bachelier, “Rank1 LMI Approach to Stability of 2D Polynomial Matrices,” Multidimens Systems Signal Process, Vol. 12, No. 11, 2001, pp. 3348. doi:10.1023/A:1008464726878

[19]

B. Dumitrescu, “LMI Stability Tests for the FornasiniMarchesini Model,” IEEE Transactions on. Signal Processing, Vol. 56, No. 8, 2008, pp. 40914095.

[20]

T. Liu, “Stability Analysis of Linear 2D Systems,” Signal Processing, Vol. 88, No. 8, 2008, pp. 20782084.
doi:10.1016/j.sigpro.2008.02.007

[21]

M. Tiwari and A. Dhawan, “A Survey on Stability of 2D Discrete Systems Described by FornasiniMarchesini First Model,” Proceedings of the International Conference on Power Control and Embedded Systems, Allahabad, 2010, pp. 14. doi:10.1109/ICPCES.2010.5698674

[22]

X. Guan, C. Long and G. Duan, “Robust Optimal Guaranteed Cost Control for 2D Discrete Systems,” IETControl Theory & Applications, Vol. 148, No. 5, 2001, pp. 355361.

[23]

A. Dhawan and H. Kar, “Comment on Robust Optimal Guaranteed Cost Control for 2D Discrete Systems,” IETControl Theory & Applications, Vol. 1, No. 4, 2007, pp. 11881190.

[24]

A. Dhawan and H. Kar, “LMIBased Criterion for the Robust Guaranteed Cost Control of 2D Systems Described by the FornasiniMarchesini Second Model,” Signal Processing, Vol. 87, No. 3, 2007, pp. 479488.
doi:10.1016/j.sigpro.2006.06.002

[25]

A. Dhawan and H. Kar, “Optimal Guaranteed Cost Control of 2D Discrete Uncertain Systems: An LMI Approach,” Signal Processing, Vol. 87, No. 12, 2007, pp. 30753085.
doi:10.1016/j.sigpro.2007.06.001

[26]

A. Dhawan and H. Kar, “LMI Approach to Suboptimal Guaranteed Cost Control for 2D Discrete Uncertain Systems,” Journal of Signal and Information Processing, Vol. 2, No. 4, 2011, pp. 292300. doi:10.4236/jsip.2011.24042

[27]

A. Dhawan and H. Kar, “An LMI Approach to Robust Optimal Guaranteed Cost Control of 2D Discrete Systems Described by the Roesser Model,” Signal Processing, Vol. 90, No. 9, 2010, pp. 26482654.
doi:10.1016/j.sigpro.2010.03.008

[28]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, 1994.
doi:10.1137/1.9781611970777

[29]

P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, “LMI Control Toolbox—For Use with Matlab,” The MATH Works Inc., Natick, 1995.
