Synthesis and Characterization of Lactone Functional Macromonomers by End Group Deactivation and Their Use in Miktoarm Star Polymer

Abstract

Newly designed miktoarm star-shaped copolymers made of poly[(benzyl methacrylate(BMA)-co-(ε-caprolacton)(CL)] and poly[(BMA-b-MMA-b-BMA)-co-ε-caprolacton)(CL)] were synthesized by combining ring-opening polymerization (ROP) of ε-caprolactone (CL) and poly(BMA) five membered lacton fuctionalized prepared via atom transfer radical polymerization (ATRP) of BMA, and ε-CL and P(BMA-b-MMA-b-BMA) dual functionalized diblock copolymer, in the presence of tin(II) bis(2-ethylhexanoate) (Sn(Oct)2). Although lactone ended poly(benzyl methacrylate) with ε-caprolactone monomer gave ring open polymerization by Sn(Oct)2, the macromonomer itself did not give any poly- merization The macromonomers, and the miktoarm star-shaped copolymers were analyzed by FT-IR and 1H-NMR spectroscopies and GPC (gel permeation chromatograph), Differential scanning calorimetry (DSC-50) and termo- gravimetric analysis (TGA-50). These copolymers exhibited the expected structure. The crystallization of star-shaped copolymers was studied by DSC. The results show that when the content of the BMA block increased, the Tm of the star-shaped block copolymer increased.

Share and Cite:

K. Demirelli and F. Bezgin, "Synthesis and Characterization of Lactone Functional Macromonomers by End Group Deactivation and Their Use in Miktoarm Star Polymer," Open Journal of Polymer Chemistry, Vol. 2 No. 2, 2012, pp. 42-55. doi: 10.4236/ojpchem.2012.22006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Iatrou and H. N. Hadjichristidis, “Synthesis of a Model 3-Miktoarm Star Terpolymer,” Macromolecules, Vol. 25, No. 18, 1992, pp. 4649-4651. doi:10.1021/ma00044a028
[2] T. He, D. Li, X. Sheng and B. Zhao “Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom Transfer Radical Polymerization, and Nitroxide-Mediated Radical Polymerization,” Macromolecules, Vol. 37, No. 9, 2004, pp. 3128-3135. doi:10.1021/ma036010c
[3] P. J. Shi, Y. G. Li and C. Y. Pan, “Block and Star Block Copolymers by Mechanism Transformation X. Synthesis of Poly(Ethylene Oxide) Methyl Ether/Polystyrene/Poly (L-Lactide) ABC Miktoarm Star Copolymers of by Combination of RAFT and ROP,” European Polymer Journal, Vol. 40, No. 7, 2004, pp. 1283-1290. doi:10.1016/j.eurpolymj.2004.02.024
[4] S. Sioula, N. Hadjichristidis and E. L. Thomas, “Direct Evidence for Confinement of Junctions to Lines in an 3 Miktoarm Star Terpolymer Microdomain Structure,” Mac- romolecules, Vol. 31, No. 23, 1998, pp. 8429-8432. doi:10.1021/ma980622t
[5] S. Pispas, N. Hadjichristidis, I. Potemkin and A. Khokhlov, “Effect of Architecture on the Micellization Properties of Block Copolymers: A2B Miktoarm Stars vs. AB Diblocks,” Macromolecules, Vol. 33, No. 5, 2000, pp. 1741-1746. doi:10.1021/ma991636h
[6] Rieger, O. Coulembier, P. Dubois, K.V. Bernaerts, F.E. Du Prez, R. Je′ro?me and C. Je′ro?me, “Controlled Synthesis of an ABC Miktoarm Star-Shaped Copolymer by Sequential Ring-Opening Polymerization of Ethylene Oxide, Benzyl β-Malolactonate, and ε-Caprolactone,” Macromolecules, Vol. 38, No. 26, 2005, pp. 10650-10657. doi:10.1021/ma051581l
[7] X. Zhang, J. Xia and K. Matyjaszewski, “End-Functional Poly(Tert-butyl Acrylate) Sta Polymers by Controlled Ra- dical Polymerization,” Macromolecules, Vol. 33, No. 7, 2000, pp. 2340-2345. doi:10.1021/ma991076m
[8] J. P. Kennedy and S. Jacob, “Cationic Polymerization Astronomy. Synthesis of Polymer Stars by Cationic Means”, Accounts of Chemical Research, Vol. 31, No. 12, 1998, pp. 835-841. doi:10.1021/ar950065k
[9] K. Ohno, B. Wong and D. M. Haddleton, “Synthesis of Well-Defined Cyclodextrin-Core Star Polymers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 39, No. 13, 2001, pp. 2206-2214.
[10] A. M. Kasko, A. M. Heintz and C. Pugh, “The Effect of Molecular Architecture on the Thermotropic Behavior of Poly[11-(4’-cyanophenyl-4”-phenoxy)undecyl acrylate] and Its Relation to Polydispersity,” Macromolecules, Vol. 31, No. 2, 1998, pp. 256-271. doi:10.1021/ma971279f
[11] G. Ravikumar and R. D. Chakraborty, “Environmentally Benign Process For Bulk Ring Opening Polymerization of Lactones Using Iron and Ruthenium Chloride Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 301, No. 1-2, 2009, pp. 84-92. doi:10.1016/j.molcata.2008.11.010
[12] F. Deng, K. S. Bisht, R. A. Gross and D. L. Kaplan, “Chemoenzymatic Synthesis of a Multiarm Poly(Lactide- co-epsilon-caprolactone),” Macromolecules, Vol. 32, No. 15, 1999, pp. 5159-5161. doi:10.1021/ma990055p
[13] M. Trollsas, J. L. Hedrick, “Dendrimer-Like Star Polymers,” Journal of the American Chemical Society, Vol. 120, No. 19, 1998, pp. 4644-4651. doi:10.1021/ja973678w
[14] H. R. Kricheldorf, “Syntheses and Application of Poly- lactides,” Chemosphere, Vol. 43, No. 1, 2000, pp. 49-54. doi:10.1016/S0045-6535(00)00323-4
[15] K. E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff, “Polymeric Systems for Controlled Drug Release,” Chemical Reviews, Vol. 99, No. 11, 1999, pp. 3181-3198. doi:10.1021/cr940351u
[16] F. G. Hutchinson and B. J. A. Furr, “Biodegradable Poly- mer Systems for the Sustained Release of Polypeptides,” In: A. H. Fawcett, Ed., High Value Polymers, The Royal Society of Chemistry, Cambridge, 1991, pp. 58-78
[17] B. S. Lele and J. C. Leroux, “Synthesis of Novel Amphiphilic Star-Shaped Poly(Epsilon-caprolactone)-block-poly (N-(2-hydroxypropyl)methacrylamide) by Combination of Ring-Opening and Chain Transfer Polymerization,” Poly- mer, Vol. 43, No. 21, 2002, pp. 5595-5606. doi:10.1016/S0032-3861(02)00435-4
[18] J. Chen, H. Zhang, J. Chen and X. Wang, “Synthesis Of Star-Shaped Poly(Epsilon-Caprolactone)-B-Poly(Styrene) Block Copolymer By Combining Ring-Opening Poly- merization And Atom Transfer Radical Polymerization,” Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 42, No. 9, 2005, pp.1247-1257. doi:10.1080/10601320500189554
[19] J. L. Hedrick, M. Trollsas, C. J. Hawker, B. Atthoff, H. Claesson, A. Heise, R. D. Miller, D. Mecerreyes, R. Jerome and P. Dubois, “Dendrimer-Like Star Block and Amphiphilic Copolymers by Combination of Ring Open- ing and Atom Transfer Radical Polymerization,” Macromolecules, Vol. 31, No. 25, 1998, pp. 8691-8705. doi:10.1021/ma980932b
[20] R. F. Storey and J. W. Sherman, “Characterization of Polyisobutylene by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry,” Macro- molecules, Vol. 35, No. 5, 2002, pp. 1505-1512.
[21] A. Kowalski, A. Duda and S. Penczek, “Kinetics and Me- chanism of Cyclic Esters Polymerization Initiated with Tin (II) Octoate, 1. Polymerization of Epsilon-Caprolactone,” Macromolecular Rapid Communications, Vol. 19, No. 11, 1998, pp. 567-572. doi:10.1002/marc.1998.030191106
[22] K. Demirelli, C. Coskun and E. Kaya, “Polymers Based on Benzyl Methacrylate: Synthesis via Atom Transfer Radical Polymerization, Characterization, and Thermal Stabilities,” Journal of Polymer Science Part A: Polymer Chemical, Vol. 42, No. 23, 2004, pp. 5964-5973. doi:10.1002/pola.20447
[23] L. Santana, M. Teijeira, E. Uriarte, C. Teran, B. Li?ares, R. Villar, R. Laguna and E. Cano, “AM1 Theoretical Study, Synthesis and Biological Evaluation of Some Benzofuran Analogues of Anti-Inflammatory Arylalkanoic Acids,” European Journal of Pharmaceutical Sciences, Vol. 7, No. 2, 1999, pp. 161-166. doi:10.1016/S0928-0987(98)00019-0
[24] (a) G. Cheng, P. F. W. Simon, M. Hartenstein and A. H. E. Muller, “New Strategy for the Synthesis of Halogen-Free Acrylate Macromonomers by Atom Transfer Radical Polymerization,” Macromolecules, Vol. 34, No. 16, 2001, pp. 5394-5397. doi:10.1021/ma010277z (b) C. Y. Hong and C. Y. Pan, “Synthesis and Characterization of Hyperbranched Polyacrylates in the Presence of a Tetrafunctional Initiator with Higher Reactivity Than Monomer by Self-Condensing Vinyl Polymerization,” Polymer, Vol. 42, No. 23, 2001, pp. 9
[25] J. Nijenhuis, D. W. Grijpma and A. J. Pennings, “Lewis acid-Catalyzed Polymerization of L-Lactide. Kinetics and Mechanism of the Bulk-Polymerization,” Macromolecules, Vol. 25, No. 24, 1992, pp. 6419. doi:10.1021/ma00050a006
[26] H. R. Kricheldorf, I. Kreiser-Saunders and C. Boettcher, “Polylactones: 31. Sn(II)octoate-initiated Polymer?zat?on Of L-Lact?de: A Mechanistic Study,” Polymer, Vol. 36, No. 6, 1995, pp. 1253-1259. doi:10.1016/0032-3861(95)93928-F
[27] P. J. A. In’t Veld, E. M. Velner, P. van de Witte, J. Hamhuis, P. J. Dijkstra and J. Feijen “Melt Block Polymerization of ?-Caprolactone and L-Lactide,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 35, No. 2, 1997, pp. 219-226.
[28] K. Majerska, A. Duda and S. Penczek, “Kinetics and Mechanism of Cyclic Esters Polymerisation Initiated with Tin(II) Octoate, 4. Influence of Proton Trapping Agents on the Kinetics of Epsilon-Caprolactone and L,L-Dilactide Polymerisation,” Macromolecular Rapid Communications, Vol. 21, No. 18, 2000, pp. 1327-1332. doi:10.1002/1521-3927(20001201)21:18<1327::AID-MARC1327>3.0.CO;2-9
[29] E. Nolley, J. W. Barlow and D. R. Paul, “Mechanical Properties of Polypropylene-Low Density Polyethylene Blends,” Polymer Engineering and Science, Vol. 20, No. 5, 1980, pp. 364-369. doi:10.1002/pen.760200508
[30] M. F. Co?kun, K. Demirelli and M. Co?kun, “Homo- and Copolymerization of Phenacyl Methacrylate via the Atom Transfer Radical Polymerization Method,” Journal of Polymer Science Part A: Polymer Chemical, Vol. 44, No. 9, 2007, pp. 995-1004.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.