Effect of Fiber Loading and Compatibilizer on Rheological, Mechanical and Morphological Behaviors


This study presents the composites prepared by melt blending based on high-density polyethylene, containing various amounts of kenaf fiber loadings and polyethylene-grafted maleic anhydride (PE-g-MA) in an internal mixer were prepared and investigated. Fourier transform infrared spectroscopy was used to characterize both untreated and treated ke- naf fibers. A rheological study of the composites showed a high complex viscosity and dynamic shear storage modulus between untreated and treated composites and composites with compatibilizer. A mechanical test showed that the ten- sile strength and tensile modulus were optimal with 20% fiber loading but decreased with 30% fiber loading for both the untreated and treated composites. The composite with PE-g-MA showed an improved mechanical strength. This phenomenon is due to an increase in the interfacial adhesion between the fiber and matrix leading to an improvement in the compatibility of the blend. Treatment of the kenaf fiber improved in the mechanical and impact strengths in com- parison to the untreated kenaf composites. This behavior was supported by a morphology analysis of the fractured sur- faces revealed that strong interfaces were formed on addition of the compatibilizer.

Share and Cite:

I. Noranizan and I. Ahmad, "Effect of Fiber Loading and Compatibilizer on Rheological, Mechanical and Morphological Behaviors," Open Journal of Polymer Chemistry, Vol. 2 No. 2, 2012, pp. 31-41. doi: 10.4236/ojpchem.2012.22005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Avella, G. Bogoeva-Gaceva, A. Buzarovska , M. E. Errico, G. Gentile and A. Grozdanov, “Poly(lactic acid)- Based Biocomposites Reinforced with Kenaf Fibers,” Journal of Applied Polymer Science, Vol. 108, No. 6, 2008, pp. 3542-3551. doi:10.1002/app.28004
[2] J. R. Araujo, W. R. Waldman and M. A. De Paoli, “Ther- mal Properties of High Density Polyethylene Composites with Natural Fibres: Coupling Agent Effect,” Polymer Degradation and Stability, Vol. 93, No. 10, 2008, pp. 1770-1775. doi:10.1016/j.polymdegradstab.2008.07.021
[3] N. Sgriccia and M. C. Hawley, “Thermal, Morphological, and Electricazation Characterization of Microwave Pro- cessed Natural Fiber Composites,” Composites Science and Technology, Vol. 67, No. 9, 2007, pp. 1986-1991.
[4] A. Baurmaud and C. Baley, “Investigation on the Recycling of Hemp and Sisal Fibre Reinforced Polypropylene Composites,” Polymer Degradation and Stability, Vol. 92, No. 6, 2007, pp. 1034-1045. doi:10.1016/j.polymdegradstab.2007.02.018
[5] N. Sgriccia, M. C. Hawley and M. Misra, “Characteriza- tion of Natural Fiber Surfaces and Natural Fiber Compos- ites,” Composites Part A: Applied Science and Manufac- turing, Vol. 39, No. 10, 2008, pp. 1632-1637.
[6] S. Mir, T. Yasin, T. J. Halley, H. M. Siddiqi and T. Nicholson, “Thermal, Rheological, Mechanical and Mor- phological Behavior of HDPE/Chitosan Blend,” Carbohydrate Polymers, Vol. 83, No. 2, 2011, pp. 414-421. doi:10.1016/j.carbpol.2010.07.069
[7] M. Hetzer and D. D. Kee, “Wood/Polymer/Nanoclay Com- posites, Environmentally Friendly Sustainable Technology: A Review,” Chemical Engi-neering Research and Design, Vol. 86, No. 10, 2008, pp. 1083-1093. doi:10.1016/j.cherd.2008.05.003
[8] S. Ochi, “Mechanical Properties of Kenaf Fibers and Kenaf/PLA Composites,” Me-chanics of Materials, Vol. 40, No. 4-5, 2008, pp. 446-452. doi:10.1016/j.mechmat.2007.10.006
[9] M. C. N. Yemele, A. Koubaa, A. Clautier, P. Soulounganga and M. Wolcott, “Effect of Bark Fiber Content and Size on the Mechanical Properties of Bark/HDPE Compo- sites,” Composites: Part A, Vol. 41, No. 1, 2010, pp. 131- 137. doi:10.1016/j.compositesa.2009.06.005
[10] D. W. Chae, K. J. Kim and B. C. Kim, “Effect of Silicate-1 Nanoparticles on Rheological and Physical Properties of HDPE,” Polymer, Vol. 47, No. 10, 2006, pp. 3609- 3615. doi:10.1016/j.polymer.2006.03.053
[11] Y. Lei, Q. Wu, F. Yao and Y. Xu, “Preparation and Properties of Recycled HDPE/Natural Fiber Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 7, 2007, pp. 1664-1674. doi:10.1016/j.compositesa.2007.02.001
[12] F. P. L. Mantia, M. Monreale and Z. A. M. Ishak, “Effect of Glass Fiber Hybridization on Properties of Sisal Fiber- Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 40, No. 7, 2005, pp. 623-627.
[13] J. Mirbagheri, M. Tajvidi, J. C. Hermanson and I. Ghasemi, “Tensile Properties of Wood Flour/Kenaf Fiber Polypropylene Hybrid Composites,” Journal of Applied Polymer Science, Vol. 105, No. 5, 2007, pp. 3054-3059. doi:10.1002/app.26363
[14] K. C. M. Nair, R. P. Kumar, S. Thomas, S. C. Schit and K. Ramamurthy, “Rheological Behav-ior of Short Sisal Fiber-Reinforced Polystyrene Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 11, 2000, pp. 1231-1240. doi:10.1016/S1359-835X(00)00083-X
[15] C. F. Liu, R. Sun, M. Qin, A. Zin, J. Ren, F. Xu, J. Ye and S. Wu, “Chemical Modification of Ultrasound-Pre- treated Sugarcane Bagasse with Maleic Anhydride,” Industrial Crops and Products, Vol. 26, No. 2, 2007, pp. 212-219. doi:10.1016/j.indcrop.2007.03.007
[16] S. Alix, E. Philippe, A. Bessadok, L. Lebrun, C. Morvan and S. Marais, “Effect of Chemical Treatments on Water Sorption and Mechanical Properties of Flax Fibres,” Bioresource Technology, Vol. 100, No. 20, 2009, pp. 4742-4749. doi:10.1016/j.biortech.2009.04.067
[17] P. J. Herrera-Franco and A. Valades-Gonzalez, “A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites,” Composites Part B: Engineering, Vol. 36, No. 8, 2005, pp. 597-608. doi:10.1016/j.compositesb.2005.04.001
[18] S. Mohanty, S. Verma and S. K. Nayak, “Dynamic Mechanical and Thermal Properties of MAPE Treated Jute/HDPE Composites,” Composites Science and Tech- nology, Vol. 66, No. 3-4, 2006, pp. 538-547. doi:10.1016/j.compscitech.2005.06.014
[19] A. F. Vargas, V. H. Orosco, F. Rault, S. Giraud, E. Devaux and B. L. López, “Influence of Fiber-Like Nanofillers on the Rheological, Me-chanical, Thermal and Fire Properties of Polypropylene: An Application to Multifilament Yarn,” Composites: Part A, Vol. 41, No. 12, 2010, pp. 1797-1806. doi:10.1016/j.compositesa.2010.08.018
[20] M. Modesti, A. Lorenzetti, D. Bon, S. Besco, “Thermal Behaviour of Compatibilised Polypropylene Nanocomposite: Effect of Processing Condition,” Polymer Degradation and Stability, Vol. 91, No. 4, 2006, pp. 672-680. doi:10.1016/j.polymdegradstab.2005.05.018
[21] T. Yan, Y. Xu and C. Yu, “The Isolation and Characteri- zation of Lignin of Kenaf Fibers,” Journal of Applied Polymer Science, Vol. 114, No. 3, 2009, pp. 1896-1901. doi:10.1002/app.29881
[22] A. M. M. Edeerozey, H. M. Akil, A. B. Azhar and M. I. Z. Ariffin, “Chemical Modification of Kenaf Fibers,” Materials Letters, Vol. 61, No. 10, 2007, pp. 2023-2025. doi:10.1016/j.matlet.2006.08.006
[23] H. Anuar, S. H. Ahmad, R. Rashid, A. Ahmad and W. N. W. Busu, “Mechanical Properties and Dynamic Mecha- nical Analysis of Thermoplastic-Natural-Rubber-Reinforced Short Carbon Fiber and Kenaf Fiber Hybrid Composites,” Journal of Applied Polymer Science, Vol. 107, No. 6, 2008, pp. 4043-4052. doi:10.1002/app.27441
[24] I. Ahmad, P. Y. Wong and I. Abdullah, “Effect of Fiber Composition and Graft-Copoly(ethylene/maleic anhydride) on Thermoplastic Natural Rubber Composites Reinforced by Aramid Fiber,” Polymer Composites, Vol. 27, No. 4, 2006, pp. 395-401. doi:10.1002/pc.20225
[25] A. Vesterinen, S. Lipponen, J. Rich, J. Sepp?l?, “Effect of Block Composition on Thermal Properties and Melt Viscosity of Poly[2-(dimethylamino)ethyl methacrylate], Poly(ethylene oxide) and Poly(propylene oxide) Block Co-Polymer,” Express Polymer Letter, Vol. 5, No. 9, 2011, pp. 754-765. doi:10.3144/expresspolymlett.2011.74
[26] M. Z. Pan, S. Y. Zhang and D. G. Zhou, “Preparation and Properties of Wheat Straw Fiber-Polypropylene Composites. Part II. Investigation of Surface Treatments on the Thermo-Mechanical and Rheological Properties of the Composites,” Journal of Composite Material, Vol. 44, No. 9, 2010, pp. 1061-1074. doi:10.1177/0021998309349549
[27] S. H. Tabatabaei, P. J. Carreau and A. Ajji, “Rheological and Thermal Properties of Blends of a Long-Chain Branched Polypropylene and Different Linear Polypropylenes,” Chemical Engineering Science, Vol. 64, No. 22, 2009, pp. 4719-4731. doi:10.1016/j.ces.2009.04.009
[28] A. Durmus, A. Kasgoz and C. W. Marcosko, “Linear Low Density Polyethylene (LLDPE)/Clay Nanocomposites. Part 1: Structural Characterization and Qualifying Clay Dispersion by Melt Rheology,” Polymer, Vol. 48, No. 15, 2007, pp. 4492-4502. doi:10.1016/j.polymer.2007.05.074
[29] E. Tronc, C. A. Hernández-Escobar, R. Ibarra-Gómez and A. Estrada-Monje, “Blue Agave Fiber Esterification for the Reinforcement of Thermoplastic Composites,” Carbohydrate Polymers, Vol. 67, No. 2, 2007, pp. 245-255. doi:10.1016/j.carbpol.2006.05.027
[30] C. Tan, I. Ahmad and M. Heng, “Characterization of Polyester Composites from Recycled Polyethylene Tereph- thalate Reinforced with Empty Fruit Bunch Fibers,” Materials and Design, Vol. 32, No. 8-9, 2011, pp. 4493- 4501. doi:10.1016/j.matdes.2011.03.037
[31] M. S. Jamil, I. Ahmad and I. Abdullah, “Effect of Rice Husk Filler on the Mechanical and Thermal Properties of Liquid Natural Rubber Compatibilized High-Density Polyethylene/Natural Rubber Blends,” Journal of Polymer Research, Vol. 13, No. 4, 2006, pp. 315-321. doi:10.1007/s10965-005-9040-8
[32] H. Liu, Q. Wu and Q. Zhang, “Preparation and Properties of Banana Fiber-Reinforced Composites Based on High Density Polyethylene (HDPE)/Nylon-6 Blends,” Bioresource Technology, Vol. 100, No. 23, 2009, pp. 6088- 6097. doi:10.1016/j.biortech.2009.05.076
[33] K. Jarukumjorn and N. Suppakarn, “Processing and Mechanical Properties of Organic Filler-Polypropylene Com- posites,” Composites: Part B, Vol. 96, No. 5, 2009, pp. 1906-1913.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.