A model of bone adaptation as a topology optimization process with contact

DOI: 10.4236/jbise.2012.55030   PDF   HTML     6,154 Downloads   9,102 Views   Citations


Topology optimization is presently used in most diverse scientific, technologic and industrial areas, including biomechanics. Bone remodelling models and structural optimization has mutually provided inspiration for new developments in biomechanics and biomedicine. Considering that bone has the ability to adapt its internal structure to mechanical loading (Wolff’s law and Roux’s paradigm), it is possible to model the behaviour of the bone structure by the use of a topology optimization methodology whose optimization variables can be the relative densities and the orthotropic directions. In this work, the internal bone adaptation of a proximal femur is considered. The bone-remodelling scheme is numerically described by a time-dependent evolutionary procedure with anisotropic material parameters. The remodelling rate equation is obtained from the structural optimization task of maximizing the stiffness subject to a biological cost associated with metabolic maintenance of bone tissue in time. The situation of multiple load conditions is considered for a three-dimensional finite element model of the proximal femur. The bone density distribution of a real femur is used as the initial design for the onset of the remodelling mechanism. Examples of bone adaptation resulting from load changes are presented. The three-dimensional finite element model of the proximal femur with initial bone density distribution was adapted to implant a cementless stem. A remeshing technique is used to assign the bone relative density distribution to the new geometry and mesh. The time adaptation of the bone is assessed considering contact with friction at the bone-stem interface. Results of bone density evolution and osteointegration distribution are obtained.

Share and Cite:

Andrade-Campos, A. , Ramos, A. and Simões, J. (2012) A model of bone adaptation as a topology optimization process with contact. Journal of Biomedical Science and Engineering, 5, 229-244. doi: 10.4236/jbise.2012.55030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bens?e, M.P. and Sigmund, O. (2003) Topology optimization—Theory, methods and applications. Springer-Verlag, BH.
[2] Huiskes, R. (2000) If bone is the answer, then what is the question? Journal of Anatomy, 197, 145-156. doi:10.1046/j.1469-7580.2000.19720145.x
[3] Bagge, M. (2000) A model of bone adaptation as an optimization process. Journal of Biomechanics, 33, 1349-1357. doi:10.1016/S0021-9290(00)00124-X
[4] Fernandes, P., Rodrigues, H. and Jacobs, C. (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of wolff. Computer Methods in Biomechanics and Biomedical Engineering, 2, 125-138. doi:10.1080/10255849908907982
[5] Fernandes, P., Guedes, J.M. and Rodrigues, H. (1999) Topology optimization of 3D linear elastic structures with a constraint on perimeter. Computers & Structures, 73, 583-594. doi:10.1016/S0045-7949(98)00312-5
[6] Fernandes, P.R., Folgado, J., Jacobs, C. and Pellegrini, V. (2002) A contact model with ingrowth control for bone remodelling around cementless stems. Journal of Biomechanics, 35, 167-176. doi:10.1016/S0021-9290(01)00204-4
[7] Folgado, J., Fernandes, P.R., Guedes, J.M. and Rodrigues, H. (2004) Evaluation of osteoporotic bone quality by a computational model for bone remodelling. Computers & Structures, 82, 1381-1388. doi:10.1016/j.compstruc.2004.03.033
[8] Stolk, J., Verdonschot, N. and Huiskes, R. (2001) Hip joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. Journal of Biomechanics, 34, 917-926. doi:10.1016/S0021-9290(00)00225-6
[9] Waide, V., Cristofolini, L., Stolk, J., Verdonschot, N. and Toni, A. (2003) Experimental investigation of bone remodeling using composite femurs. Clinical Biomechanics, 18, 523-536. doi:10.1016/S0268-0033(03)00072-X
[10] Viceconti, M., Cavalloti, G., Andrisano, A.O. and Toni, A. (1995) Discussion on the design of a hip joint simulator. Medical Engineering & Physics, 18, 234-240. doi:10.1016/1350-4533(95)00026-7
[11] Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. Journal of Biomechanics, 33, 1611-1618. doi:10.1016/S0021-9290(00)00140-8
[12] Viceconti, M., Pancanti, A., Dotti, M., Traina, F., Cristofolini, L. (2004) Effect of the initial implant fitting on the predicted secondary stability of a cementless stem. Medical and Biological Engineering and Computing, 42, 222-229. doi:10.1007/BF02344635
[13] Viceconti, M., Ricci, S., Pancanti, A. and Cappello, A. (2004b) Numerical model to predict the long-term mechanical stability of cementless orthopaedic implants. Medical and Biological Engineering and Computing, 42, 747-753. doi:10.1007/BF02345207
[14] Moreo, P., Péreza, M.A., García-Aznar, J.M. and Doblaré, M. (2007) Modelling the mechanical behaviour of living bony interfaces. Computer Methods in Applied Mechanics and Engineering, 196, 3300-3314. doi:10.1016/j.cma.2007.03.020
[15] Reina, E., Gómez-Benito, M.J., Garcia-Aznar, J.M., Dominguez, J. and Doblaré, M. (2007) Modelo computacional de distracción ósea. Proceeding of CEMNI/ CILAMCE Conference, Sociedad Espa?ola de Métodos Numéricos en Ingeniería (SEMNI), CD-ROM paper 132, 1-10.
[16] Reina, E., Gómez-Benito, M.J., Garcia-Aznar, J.M., Dominguez, J. and Doblaré, M. (2008) Modeling distraction osteogenesis: Analysis of the distraction rate. Biomechanics and Modeling in Mechanobiology, 8, 323-335.
[17] Coelho, P., Fernandes, P.R., Guedes, J.M. and Rodrigues, H.C. (2008) A hierarchical model for concurrent material and topology optimization of three-dimensional structures. Structural and Multidisciplinary Optimization, 35, 107-115. doi:10.1007/s00158-007-0141-3
[18] Coelho, P.G., Fernandes, P.R., Rodrigues, H.C., Cardoso, J.B. and Guedes, J.M. (2009) Numerical modeling of bone tissue adaptation—A hierarchical approach for bone apparent density and trabecular structure. Journal of Biomechanics, 42, 830-837. doi:10.1016/j.jbiomech.2009.01.020
[19] Hardy, D.C., Frayssinet, P., Guilhem, A., Lafontaine, M.A. and Delince, P.E. (1991) Bonding of hydroxyapatite-coated femoral prostheses. Histopathology of specimens from four cases. Journal of Bone & Joint Surgery, 73, 732-740.
[20] Tonino, A.J., Therin, M. and Doyle, C. (1999) Hydroxyapatitecoated femoral stems. Histology and histomorphometry around five components retrieved at post mortem. Journal of Bone & Joint Surgery (British Volume), 81, 148-154. doi:10.1302/0301-620X.81B1.8948
[21] Fernandes, P. (1998) Optimiza??o da Topologia de Estruturas Tridimensionais. PhD Thesis, Instituto Superior Técnico, UTL.
[22] Oliveira, J.A., Pinho-da-Cruz, J.A., Andrade-Campos, A. and Teixeira-Dias, F. (2006) Modelling the elastic behaviour of composites materials with asymptotic expansion homogenisation. Proceeding of COMPTEST, 151-152.
[23] Pinho-da-Cruz, J., Oliveira, J.A., Teixeira-Dias, F. (2009) Asymptotic homogenisation in linear elasticity. Part I: Mathematical formulation and finite element modelling. Computational Materials Science, 45, 1073-1080. doi:10.1016/j.commatsci.2009.02.025
[24] Oliveira, J.A., Pinho-da-Cruz, J. and Teixeira-Dias, F. (2009) Asymptotic homogenisation in linear elasticity. Part II: Finite element procedures and multiscale applications. Computational Materials Science, 45, 1081-1096. doi:10.1016/j.commatsci.2009.01.027
[25] ABAQUS version 6.7 user manual (2006) Hibbitt. Karlsson & Sorenson. Inc.
[26] MSC.MARC (2005) Theory and User Information and User subroutines and special Routines. Msc. Software Corporation.
[27] Svanberg, K. (1987) The method of moving asymptotes – A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24, 358-373. doi:10.1002/nme.1620240207
[28] Jee, W.S.S (1953) The skeletal tissues, histology: Cell & tissue biology. 5th Edition, Elsevier, Amsterdam.
[29] Medical Multimedia group (1999) A Patient’s Guide to Artificial Hip Replacement. http://www.tri-countyortho.com/mmg/pated/joints/hip/hip_replacement.html. Accessed 15 Jan 2008
[30] Encyclo, online encyclopedia (2009) www.ecyclo.co.uk, encyclo MMIX
[31] Desmorat, B. (2007) Structural rigidity optimization with frictionless unilateral contact. International Journal of Solids and Structures, 44, 1132-1144. doi:10.1016/j.ijsolstr.2006.06.010
[32] Fancello, E.A. (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Structural and Multidisciplinary Optimization, 32, 229-240. doi:10.1007/s00158-006-0019-9
[33] Folgado, J. (2004) Modelos computacionais para análise e projecto e próteses ortopédicas. PhD Thesis, IST-UTL.
[34] Ramos, A. (2006) Estudo numérico e experimental de uma nova componente Femural da prótese de Anca Cimentada. PhD Thesis, Universidade de Aveiro.
[35] Ramos, A., Fonseca, F. and Sim?es, J.A. (2006) Simulation of physiological loading in total hip replacements. Journal of Biomechanical Engineering, 128, 579-588. doi:10.1115/1.2205864
[36] Ramos, A. and Sim?es, J.A. (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Medical Engineering & Physics, 28, 916-924. doi:10.1016/j.medengphy.2005.12.006
[37] Egan, J.M. and Marsden, D.C. (2001) A spring network model for the analysis of load transfer and tissue reactions in intramedullary fixation. Clinical Biomechanics, 16, 71-79. doi:10.1016/S0268-0033(00)00070-X
[38] Sadegh, A.M., Luo, G.M. and Cowin, S.C. (1993) Bone ingrowth: An application of the boundary element method to bone remodeling at the implant interface. Journal of Biomechanics, 26, 167-182. doi:10.1016/0021-9290(93)90047-I
[39] Spears, I.R., Pfleiderer, M., Schneider, E., Hille, E., Bergmannn, G. and Morlock, M.M. (2000) Interfacial conditions between a press-fit acetabulax cup and bone during daily activities: Implications for achieving bone in-growth. Journal of Biomechanics, 33, 1471-1477. doi:10.1016/S0021-9290(00)00096-8
[40] Keaveny, T. and Bartel, D. (1993) Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement. Journal of Bone & Joint Surgery, 77, 911-923.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.