Share This Article:

Morphology Characterization and Kinetics Evaluation of Pitting Corrosion of Commercially Pure Aluminium by Digital Image Analysis

Abstract Full-Text HTML Download Download as PDF (Size:748KB) PP. 287-293
DOI: 10.4236/msa.2012.35042    5,533 Downloads   8,758 Views   Citations

ABSTRACT

The pit morphology and growth kinetics of commercially pure aluminium in naturally aerated NaCl solutions were studied using an image processing method based on reflected light microscopy. In order to distinguish between pits and pre-existing cavities, metallographic examination and statistical analysis were carried out before and after corrosion testing. The results show that the pit shapes and sizes are more dependent on the immersion time than the chloride concentration. Pits are predominantly hemispherical, but they undergo reasonable geometric transitions associated with increased immersion time and occur without significant depth variation. The role of chloride ions is more closely associated with the pit nucleation phenomenon.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. C. Pereira, J. W. J. Silva, H. A. Acciari, E. N. Codaro and L. R. O. Hein, "Morphology Characterization and Kinetics Evaluation of Pitting Corrosion of Commercially Pure Aluminium by Digital Image Analysis," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 287-293. doi: 10.4236/msa.2012.35042.

References

[1] G. S. Frankel, “Pitting Corrosion of Metals,” Journal of the Electrochemical Society, Vol. 145, No. 6, 1998, pp. 2186-2198. doi:10.1149/1.1838615
[2] A. Seyeux, et al., “ToF-SIMS Imaging Study of the Early Stages of Corrosion in Al-Cu Thin Films,” Journal of the Electrochemical Society, Vol. 158, No. 6, 2011, pp. 165-171. doi:10.1149/1.3568944
[3] Z. Szklarska-Smmialowska, “Pitting Corrosion of Aluminum,” Corrosion Science, Vol. 41, No. 9, 1999, pp. 1743-1767. doi:10.1016/S0010-938X(99)00012-8
[4] V. McCafferty, “Sequence of Steps in the Pitting of Aluminum by Chloride Ions,” Corrosion Science, Vol. 45, No. , 2003, pp. 1421-1438. doi:10.1016/S0010-938X(02)00231-7
[5] C. Punckt, M. Bolscher, H. H. Rotermund, A. S. Mikhailov, L. Organ, N. Budiansky, et al. “Sudden Onset of Pit Ting Corrosion on Stainless Steel as a Critical Phenomenon,” Science, Vol. 305, No. 5687, 2004, pp. 1133-1136. doi:10.1126/science.1101358
[6] J. R. Galvele, “Tafel’s Law in Pitting Corrosion and Crevice Corrosion Susceptibility,” Corrosion Science, Vol. 47, No. 12, 2005, pp. 3053-3067. doi:10.1016/j.corsci.2005.05.043
[7] G. T. Burstein, C. Liu, R. M. Souto and S. P. Vines, “Origins of Pitting Corrosion,” Corrosion Engineering, Science and Technology, Vol. 39, No. 1, 2004, pp. 25-30. doi:10.1179/147842204225016859
[8] K. S. Rao and K. P. Rao, “Pitting Corrosion of HeatTreatable Aluminium Alloys and Welds: A Review,” Transactions of the Indian Institute of Metals, Vol. 57, No. 6, 2004, pp. 593-610.
[9] S. J. Findlay and N. D. Harrison, “Why Aircraft Fail,” Materials Today, Vol. 5, No. 11, 2002, pp. 18-25. doi:10.1016/S1369-7021(02)01138-0
[10] S. M. Ghahari, et al., “Pitting Corrosion of Stainless Steel: Measuring and Modelling Pit Propagation in Support of Damage Prediction for Radioactive Waste Containers,” Corrosion Engineering, Science and Technology, Vol. 46, No. 2, 2011, pp. 205-211. doi:10.1179/1743278211Y.0000000003
[11] M. Baumgartner and H. Kaesche, “Aluminium Pitting in Chloride Solutions: Morphology and Pit Growth Kinetics,” Corrosion Science, Vol. 31, 1990, pp. 231-236. doi:10.1016/0010-938X(90)90112-I
[12] Ch. Blanc and G. Mankowski, “Pit Propagation Rate on the 2024 and 6056 Aluminium Alloys,” Corrosion Science, Vol. 40, No. 2-3, 1998, pp. 411-429. doi:10.1016/S0010-938X(97)00147-9
[13] A. R. Trueman, “Determining the Probability of Stable Pit Initiation on Aluminium Alloys Using Potentiostatic Electrochemical Measurements,” Corrosion Science, Vol. 47, No. 9, 2005, pp. 2240-2256. doi:10.1016/j.corsci.2004.09.021
[14] G. Meng, L. Wei, T. Zhang, Y. Shao and F. Wang, “Effect of Microcrystallization on Pitting Corrosion of Pure Aluminium,” Corrosion Science, Vol. 51, No. 9, 2009, pp. 2151-2157. doi:10.1016/j.corsci.2009.05.046
[15] D. W. Buzza and R. C. Alkire, “Growth of Corrosion Pits on Pure Aluminium in 1M NaCl,” Journal of the Electrochemical Society, Vol. 142, No. 4, 1995, pp. 1104-1111. doi:10.1149/1.2044137
[16] Standard Guide for Examination and Evaluation of Pitting Corrosion, American Society for Testing and Materials G46-94, 1999, pp. 169-175.
[17] T.-S. Huang and G. S. Frankel, “Influence of Grain Structure on Anisotropic Localized Corrosion Kinetics of AA7xxx-T6 Alloys,” Corrosion Engineering, Science and Technology, Vol. 41, No. 3, 2006, pp. 192-199. doi:10.1179/174327806X120739
[18] J. W. J. Silva, A. G. Bustamante, E. N. Codaro, R. Z. Nakazato and L. R. O. Hein, “Morphological Analysis of Pits Formed on Al 2024-T3 in Chloride Aqueous Solution,” Applied Surface Science, Vol. 236, No. 1-4, 2004, pp. 356-365. doi:10.1016/j.apsusc.2004.05.007
[19] J. W. J. Silva, E. N. Codaro, R. Z. Nakazato and L. R. O. Hein, “Influence of Chromate, Molybdate and Tungstate on Pit Formation in Chloride Medium,” Applied Surface Science, Vol. 252, No. 4, 2005, pp. 1117-1122. doi:10.1016/j.apsusc.2005.02.030
[20] Aluminium and its Alloys—Chemical Composition Classification, Brazilian Standard: NBR 6834, 2006, pp. 1-25.
[21] Standard Guide for Electrolytic Polishing of Metallographic Specimens, American Society for Testing and Materials E1558-93, pp. 917-928.
[22] W. S. Rasband, Image J, U.S. National Institutes of Health, Bethesda, 1997-2007. http://rsb.info.nih.gov/ij/
[23] E. N. Codaro, R. Z. Nakazato, A. L. Horovistiz, L. M. F. Ribeiro, R. B. Ribeiro and L. R. O. Hein, “An Image Processing Method for Morphology Characterization and Pitting Corrosion Evaluation,” Materials Science and Engineering: A, Vol. 334, No. 1-2, 2002, pp. 298-306. doi:10.1016/S0921-5093(01)01892-5
[24] Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, American Society for Testing and Materials E1382-97; 2004, pp. 1-22.
[25] Standard Practice for Laboratory Immersion Corrosion Testing of Metals, American Society for Testing and Materials G31-72, 1995, pp. 95-101.
[26] Public Water Supply Systems—Designs of Water Treatment Works—Procedure, Brazilian Standard: NBR 12216, 1992, pp. 1-18.
[27] J. W. Müller, “Possible Advantages of a Robust Evaluation of Comparisons,” Journal of Research of the National Institute of Standards and Technology, Vol. 105, No. 4, 2000, pp. 551-555. doi:10.6028/jres.105.044

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.