First-Order Studies of Nanometric Biferroic

DOI: 10.4236/wjcmp.2012.22012   PDF   HTML   XML   3,958 Downloads   7,081 Views   Citations


Magnetoelectric biferroic nanocomposite with composition 0.5Ni0.5Zn0.5Fe2O4 + 0.5BaTiO3 was synthesized by ceramic technique. The structural and electrical characterizations of the investigated nanocomposite are discussed and reported. The formation of nanosized composite with two separate phases was confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The variation of dielectric constant (ε'), dielectric loss factor (ε") and the ac conductivity (σac) of 0.5Ni0.5Zn0.5Fe2O4 + 0.5BaTiO3 was investigated as a function of both frequency and temperature. Thermal hysteresis (first-order transition) was obtained during heating (300 - 830 K) and cooling runs (830 - 300 K). The exact transition temperature and the amount area of the thermal hysteresis depend on applied ac electric field. The delay (lagging) time between heating and cooling processes was esti-mated from the hysteresis loop area versus frequency. The conduction mechanism in the investigated samples was explained according to different models. This study enhances the use of this prepared system in memory applications.

Share and Cite:

M. Ahmed, U. Seddik and N. Imam, "First-Order Studies of Nanometric Biferroic," World Journal of Condensed Matter Physics, Vol. 2 No. 2, 2012, pp. 66-74. doi: 10.4236/wjcmp.2012.22012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Zakharenko, “First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics,” Journal of Electromagnetic, Analysis and Application, Vol. 2, No. 5, 2010, PP. 287-296. doi:10.4236/jemaa, 2010-25037
[2] L. Zheng, “Cobalt Ferrite-Barium Titanate Sol-Gel Biferroics,” Ph.D. Thesis, University of Maryland, College Park, 2006
[3] J. X. Zhang, J. Y. Dai, C. K. Chow, C. L. Sun, V. C. Lo and H. L. W. Chan, “Magnetoelectric Coupling in CoFe2O4/ SrRuO3/Pb(Zr0.52Ti0.48)O3 Heteroepitaxial Thin Film Structure,” Applied Physics Letters, Vol. 92, No. 2, 2008, p. 022901. doi:10.1063/1.2830813
[4] S. R. Kulkarni, C. M. Kanamadi, K. K. Patankar, B. K. Chougule, “Magnetic Properties and Magnetoelectric Effect in Ni0.8Co0.1Cu0.1Fe2O4+PbZr0.2Ti0.8O3 Composites,” Journal of Material Science, Vol. 40, No. 21, 2005, PP. 5691-5694. doi:10.1007/s10853-005-1136-3
[5] K. C. Kao, “Dielectric Phenomena in Solids,” Elsevier Academic Press, Waltham, 2004.
[6] R. S. Devan, S. B. Deshpande and B. K. Chougule, “Ferroelectric and Ferromagnetic Properties of (x)BaTiO3 + (1 – x)Ni0.94Co0.01Cu0.05Fe2O4 Composite,” Journal of Physics D: Applied Physics, Vol. 40, No. 7, 2007, PP. 1864-1868. doi:10.1088/0022-3727/40/7/004
[7] M. A. Ahmed, N. Okasha1 and N. G. Imam, “Structural and Magnetic Properties of Electroceramic Magnetoelectric Nanocomposites,” The African Review of Physics, Vol. 7, No. 2, 2012, PP. 7-17.
[8] B. D. Cullity, “Elements of X-Ray Diffraction,” Addison Wesley, Boston, 1978.
[9] M. A. Ahmed and S. I. El-Dek, “Optimizing the Physical Characterizations of Orthoferrites to be Used as Pressure and Gamma Sensor,” Materials Letters, Vol. 60, No. 12, 2006, pp. 1437-1446. doi:10.1016/j.matlet.2005.11.076
[10] J. Drummond, R. M. Hathorn, M. D. Cailas and R. Karuhn, “Particle Size Analysis of Amalgam Powder and Handpiece Generated Specimens,” Dental Materials, Vol. 17, No. 4, 2001, pp. 322-332. doi:10.1016/S0109-5641(00)00090-7
[11] M. Z. Said, D. M. Hemeda, S. A. Kader and G. Z. Farage, “Structural, Electrical and Infrared Studies of Ni0.7Cd0.3SmxFe2–xO4 Ferrite,” Turkish Journal of Physics, Vol. 31, No. 1, 2007, pp. 41-50.
[12] A. T. Chien, X. Xu, J. H. Kim, J. Sachleben, J. S. Speck and F. F. Lange, “Electrical Characterization of Ba-TiO3 Heteroepitaxial Thin Films by Hydrothermal Synthesis,” Journal of Material Research, Vol. 14, No. 8, 1999, pp. 3330-3339.
[13] S. A. Lokare, R. S. Devan, D. R. Patil and B. K. Chougule, “Studies on Electrical Properties of (x)BaTiO3 + (1 – x(Ni0.92Co0.03Mn0.05Fe2O4 ME Composites,” Journal of Material Science: Mater Electron, Vol. 18, No. 12, 2007, pp. 1211-1215. doi:10.1007/s10854-007-9135-6
[14] A. Thakur, P. Mathur and M. Singh, “Study of Dielectric Behaviour of Mn-Zn Nano Ferrites,” Journal of Physics and Chemistry Solids, Vol. 68, No. 3, 2007, pp. 378-381. doi:10.1016/j.jpcs.2006.11.028
[15] A. Singha, S. B. Narang, K. Singh, O. P. Pandeyd and R. K. Kotnala, “Electrical and Magnetic Properties of Rare Earth Substituted Strontium Hex-aferrites,” Journal of Ceramic Processing Research, Vol. 11, No. 2, 2010, pp. 241-249.
[16] I. F. Voloshin, A. V. Kalinov, L. M. Fisher, N. A. B. kina, C. Martin and A. Maignan, “Correlation between Phase Diagrams and Spontaneous Magnetization Jumps in Narrow-Band Manganites,” Bulletin of the Russian Academy of Sciences: Physics, Vol. 71, No. 8, 2007, pp. 1061-1062.
[17] X. Ren and L. X. Zhang, “Electro-Shape-Memory Effect in Ferroelectric Martensite,” Materials Science and Engineering: A, Vol. 438-440, No. 25, 2006, pp. 1071-1076.
[18] M. A. Ahmed and S. T. Bishay, “Conductivity Improvement of Li-Co-Yb Ferrite,” Journal of Physics D: Ap-plied Physics, Vol. 34, No. 9, 2001, pp. 1339-1345. doi:10.1088/0022-3727/34/9/309
[19] R. S. Devan, Y. D. Kolekar and B. K. Chougule, “Magnetoelectric Effect and Electrical Properties in BTO + Ni0.93Co0.02Cu0.05Fe2O4 Particulate Composites,” Journal of Alloys and Compounds, Vol. 461, No. 1-2, 2008, pp. 678-683.
[20] E. V. Gopalan, K. A. Malini, S. Sagar, D. S. Kumar, Y. Yoshida, I. A. Al-Omari and M. R. Anantharaman, “Mechanism of ac Conduction in Nanostructured Manganese Zinc Mixed Ferrites,” Vol. 42, No. 16, 2009, p. 165005. doi:10.1088/0022-3727/42/16/165005
[21] I. G. Austin and N. F. Mott, “Polarons in Crystalline and Non-Crystalline Materials,” Advances in Physics, Vol. 18, No. 71, 1969, pp. 41-102. doi:10.1080/00018736900101267
[22] M. A. Ahmed, N. Okasha and R. M. Kershi, “Could Mg Content Control the Conduction Mechanism of BaCo Zn-W-Type Hexagonal Ferrites?” Journal of Magnetism and Magnetic Materials, Vol. 321, No. 24, 2009, pp. 3967-3973. doi:10.1016/j.jmmm.2009.07.002
[23] S. R. Elliott, “On the Super-Linear Frequency Dependent Conductivity of Amorphous Semiconductors,” Solid State Communications, Vol. 28, No. 11, 1978, pp. 939-942. doi:10.1016/0038-1098(78)90116-3
[24] A. Sweyllama, K. Alfaramawi, S. Abboudy, N. G. Imam and H. A. Motaweh, “Growth and Current-Voltage Characterization of ZnTe/CdTe Heterojunctions,” Thin Solid Films, Vol. 519, No. 2, 2010, pp. 681-685. doi:10.1016/j.tsf.2010.08.112
[25] K. Alfaramawi, A. Sweyllam, S. Abboudy, N. G. Imam and H. A. Motaweh, “Interface States-Induced-Change in the Energy Band Diagram and Capacitance-Voltage Characteristics of Isotype Znte/Cdte Heterojunctions,” International Journal of Modern Physics B, Vol. 24, No. 24, 2010, pp. 4717-4725. doi:10.1142/S0217979210056165
[26] K. K. Patankar, S. S. Joshi and B. K. Chougule, “Dielectric Behaviour in Magnetoe-lectric Composites,” Physics Letter A, Vol. 346, No. 5-6, 2005, pp. 337-341.
[27] J. Ryu, S. Priya, K. Uchino, D. Viehland and H. Kim, “High Magnetoelectric Properties in 0.68Pb(Mg1/3Nb2/3)O3 High Magnetoelectric Properties in 0.68Pb0.32PbTiO3 - 0.32PbTi O3 Single Crystal and Terfenol-D Laminate Composite,” Journal of the Korean Ceramic Society, Vol. 39, No. 9, 2002, pp. 813-817.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.