Comparison of Protein Profiles in Sputum between COPD and Acute Exacerbation of COPD

DOI: 10.4236/ojrd.2012.22004   PDF   HTML     4,457 Downloads   9,511 Views   Citations


Background and objective: Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation that is associated with an abnormal inflammatory response of the lung to noxious particles or gases. Cigarette smoking is the major risk factor for the development of COPD. This study evaluated the levels of cyclophilin B in sputa from patients with COPD and COPD with acute exacerbation (AECOPD). Materials and Methods: Two-dimensional electrophoresis was used for differential display proteomics. Western blotting was used to identify and quantify cyclophilin B in sputum from subjects with AECOPD and COPD. Results: Forty-nine protein spots differed in relative intensity between the AECOPD (n = 6) and COPD (n = 6) subjects. Twenty proteins showed increased expression in the sputum of AECOPD subjects, and 29 proteins were present at lower levels in AECOPD sputum compared with COPD sputum. One of these proteins was associated with cyclophilin B. Cyclophilin B concentrations were lower in sputum from subjects with COPD (n = 4) versus AECOPD (n = 4). Conclusion: The sputum proteomic analysis suggests that changes in various proteins are associated with the development of AECOPD.

Share and Cite:

S. Uh, S. Ko, A. Jang, S. Park, Y. Kim, Y. Paik and C. Park, "Comparison of Protein Profiles in Sputum between COPD and Acute Exacerbation of COPD," Open Journal of Respiratory Diseases, Vol. 2 No. 2, 2012, pp. 25-30. doi: 10.4236/ojrd.2012.22004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. F. Rabe, S. Hurd, A. Anzueto, P. J. Barnes, S. A. Buist, P. Calverley, Y. Fukuchi, C. Jenkins, R. Rodriguez-Roisin, C. van Weel and J. Zielinski, “Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD Executive Summary,” American Journal of Respiratory & Critical Care Medicine, Vol. 176, No. 6, 2007, pp. 532-555. doi:10.1164/rccm.200703-456SO
[2] K. R. Chapman, D. M. Mannino, J. B. Soriano, P. A. Vermeire, A. S. Buist, M. J. Thun, C. Connell, A. Jemal, T. A. Lee, M. Miravitlles, S. Aldington and R. Beasley, “Epidemiology and Costs of Chronic Obstructive Pulmonary Disease,” European Respiratory Journal, Vol. 27, No. 1, 2006, pp. 188-207. doi:10.1183/09031936.06.00024505
[3] D. S. Kim, Y. S. Kim, K. S. Jung, J. H. Chang, C. M. Lim, J. H. Lee, S. T. Uh, J. J. Shim and W. J. Lew, “Prevalence of Chronic Obstructive Pulmonary Disease in Korea: A Population-Based Spirometry Survey,” American Journal of Respiratory & Critical Care Medicine, Vol. 172, No. 7, 2005, pp. 842-847. doi:10.1164/rccm.200502-259OC
[4] S. P. Patil, J. A. Krishnan, N. Lechtzin and G. B. Diette, “In-Hospital Mortality Following Acute Exacerbations of Chronic Obstructive Pulmonary Disease,” Archives of Internal Medicine, Vol. 163, No. 10, 2003, pp. 1180-1186. doi:10.1001/archinte.163.10.1180
[5] C. Ai-Ping, K. H. Lee and T. K. Lim, “In-Hospital and 5-Year Mortality of Patients Treated in the ICU for Acute Exacerbation of COPD: A Retrospective Study,” Chest, Vol. 128, No. 2, 2005, pp. 518-524. doi:10.1378/chest.128.2.518
[6] J. Berkius, T. Nolin, C. Mardh, G. Karlstrom and S. M. Walther, “Characteristics and Long-Term Outcome of Acute Exacerbations in Chronic Obstructive Pulmonary Disease: An Analysis of Cases in the Swedish Intensive Care Registry during 2002-2006,” Acta Anaesthesiologica Scandinavica, Vol. 52, No. 6, 2008, pp. 759-765. doi:10.1111/j.1399-6576.2008.01632.x
[7] M. Cazzola, W. MacNee, F. J. Martinez, K. F. Rabe, L. G. Franciosi, P. J. Barnes, V. Brusasco, P. S. Burge, P. M. Calverley, B. R. Celli, P. W. Jones, D. A. Mahler, B. Make, M. Miravitlles, C. P. Page, P. Palange, D. Parr, M. Pistolesi, S. I. Rennard, M. P. Rutten-van Molken, R. Stockley, S. D. Sullivan, J. A. Wedzicha and E. F. Wouters, “Outcomes for COPD Pharmacological Trials: From Lung Function to Biomarkers,” European Respiratory Journal, Vol. 31, No. 2, 2008, pp. 416-469. doi:10.1183/09031936.0009930
[8] D. A. Lomas, E. K. Silverman, L. D. Edwards, N. W. Locantore, B. E. Miller, D. H. Horstman and R. Tal-Singer, “Serum Surfactant Protein D Is Steroid Sensitive and Associated with Exacerbations of COPD,” European Respiratory Journal, Vol. 34, No. 1, 2009, pp. 95-102. doi:10.1183/09031936.00156508
[9] B. Magi, L. Bini, M. G. Perari, A. Fossi, J. C. Sanchez, D. Hochstrasser, S. Paesano, R. Raggiaschi, A. Santucci, V. Pallini and P. Rottoli, “Bronchoalveolar Lavage Fluid Protein Composition in Patients with Sarcoidosis and Idiopathic Pulmonary Fibrosis: A Two-Dimensional Electrophoretic Study,” Electrophoresis, Vol. 23, No. 19, 2002, pp. 3434-3444. doi:10.1002/1522-2683(200210)23:19<3434::AID-ELPS3434>3.0.CO;2-R
[10] K. Larsen, J. Malmstrom, M. Wildt, C. Dahlqvist, L. Hansson, G. Marko-Varga, L. Bjermer, A. Scheja and G. Westergren-Thorsson, “Functional and Phenotypical Comparison of Myofibroblasts Derived from Biopsies and Bronchoalveolar Lavage in Mild Asthma and Scleroderma,” Respiratory Research, Vol. 7, No. 1, 2006, p. 11.
[11] M. H. Cha, T. Rhim, K. H. Kim, A. S. Jang, Y. K. Paik and C. S. Park, “Proteomic Identification of Macrophage Migration-Inhibitory factor upon Exposure to TiO2 Particles,” Molecular & Cellular Proteomics, Vol. 6, No. 1, 2007, pp. 56-63. doi:10.1074/mcp.M600234-MCP200
[12] A. Shevchenko, M. Wilm, O. Vorm and M. Mann, “Mass Spectrometric Sequencing of Proteins Silver-Stained Polyacrylamide Gels,” Analytical Chemistry, Vol. 68, No. 5, 1996, pp. 850-858. doi:10.1021/ac950914h
[13] M. Carpentier, F. Allain, M. C. Slomianny, S. Durieux, C. Vanpouille, B. Haendler and G. Spik, “Receptor Type I and Type II Binding Regions and the Peptidyl-Prolyl Isomerase Site of Cyclophilin B Are Required for Enhancement of T-Lymphocyte Adhesion to Fibronectin,” Biochemistry, Vol. 41, No. 16, 2002, pp. 5222-5229. doi:10.1021/bi015951j
[14] A. Bircan, M. Gokirmak, O. Kilic, O. Ozturk and A. Akkaya, “C-Reactive Protein Levels in Patients with Chronic Obstructive Pulmonary Disease: Role of Infection,” Medical Principles and Practice, Vol. 17, No. 3, 2008, pp. 202-208. doi:159/000117793
[15] Y. Yuan, S. M. Dopheide, C. Ivanidis, H. H. Salem and S. P. Jackson, “Calpain Regulation of Cytoskeletal Signaling Complexes in Von Willebrand Factor-Stimulated Platelets: Distinct Roles for Glycoprotein Ib-V-IX and Glycoprotein IIb-IIIa (Integrin AlphaIIbbeta3) in Von Willebrand Factor-Induced Signal Transduction,” Journal of Biological Chemistry, Vol. 272, No. 35, 1997, pp. 21847-21854. doi:10.1074/jbc.272.35.21847
[16] S. P. Ribeiro, J. Villar, G. P. Downey, J. D. Edelson and A. S. Slutsky, “Sodium Arsenite Induces Heat Shock Protein-72 Kilodalton Expression in the Lungs and Protects Rats against Sepsis,” Critical Care Medicine, Vol. 22, No. 6, 1994, pp. 922-929. doi:10.1097/00003246-199406000-00008
[17] G. G. Tomazella, I. da Silva, H. J. Laure, J. C. Rosa, R. Chammas, H. G. Wiker, G. A. de Souza and L. J. Greene, “Proteomic Analysis of Total Cellular Proteins of Human Neutrophils,” Proteome Science, Vol. 7, No. 8, 2009, p. 32.
[18] M. de Souza Castro, N. M. de Sa, R. P. Gadelha, M. V. de Sousa, C. A. Ricart, B. Fontes and W. Fontes, “Proteome Analysis of Resting Human Neutrophils,” Protein and Peptide Letters, Vol. 13, No. 5, 2006, pp. 481-487. doi:10.2174/092986606776819529
[19] D. Avram, E. P. Romijn, E. H. Pap, A. J. Heck and K. W. Wirtz, “Identification of Proteins in Activated Human Neutrophils Susceptible to Tyrosyl Radical Attack: A Proteomic Study Using a Tyrosylating Fluorophore,” Proteomics, Vol. 4, No. 8, 2004, pp. 2397-2407. doi:10.1002/pmic.200300755

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.