Synthesis of Novel Hexathiolated Squalene and Its Thiol-Ene Photopolymerization with Unsaturated Monomers


In this work is described the synthesis of a multifunctional thiolated squalene. Thiol-ene coupling reactions were employed to functionalize the six double bonds of squalene, using thiolacetic acid. Hydrolysis of the resulting thioacetates, rendered the corresponding hexathiolated squalene SQ6SH. This compound was further photopolymerized separately with triallyl cyanurate, pentaerythritol triacrylate and diethyleneglycol divinyl ether. Real Time FTIR kinetics revealed that homopolymerization of the ene monomers took place in addition to the thiol-ene photopolymerization. Flexible films were obtained when SQ6SH was photopolymerized in bulk with the above mentioned unsaturated monomers.

Share and Cite:

R. Acosta Ortiz, E. Adeligna Obregón Blandón and R. Guerrero Santos, "Synthesis of Novel Hexathiolated Squalene and Its Thiol-Ene Photopolymerization with Unsaturated Monomers," Green and Sustainable Chemistry, Vol. 2 No. 2, 2012, pp. 62-70. doi: 10.4236/gsc.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O. Tueruenc, L. Montero de Espinosa, M. Firdaus and M. A. R. Meier, “Clicking Renewable Resources: Thiol-Ene Additions for the Synthesis of Monomers and Polymers Derived from Plant Oils and Terpenes,” Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), Vol. 51, No. 2, 2010, pp. 724-725.
[2] A. Gandini, “Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials,” Macromolecules, Vol. 41, No. 24, 2008, pp. 9491-9504. doi:10.1021/ma801735u
[3] H. G. Cho, S. Y. Park, J. Jegal, B. K. Song and H. J. Kim, “Preparation and Characterization of Acrylic Polymers Based on a Novel Acrylic Monomer Produced from Ve- getable Oil,” Journal of Applied Polymer Science, Vol. 116, No. 2, 2010, pp. 736-742.
[4] J. V. Crivello, “Biomass as a Source of Photopolymerizable Monomers and Polymers,” Polymer Preprints (Ame- rican Chemical Society, Division of Polymer Chemistry), Vol. 48, No. 2, 2007, pp. 844-845.
[5] M. Rose and R. Palkovits, “Cellulose-Based Sustainable Polymers: State of the Art and Future Trends,” Macro- molecular Rapid Communications, Vol. 32, No. 17, 2011, pp. 1299-1311. doi:10.1002/marc.201100230
[6] B. B.-A. Bar-Nir and J. F. Kadla, “Synthesis and Structural Characterization of 3-O-Ethylene Glycol Functionalized Cellulose Derivatives,” Carbohydrate Polymers, Vol. 76, No. 1, 2009, pp. 60-67. doi:10.1016/j.carbpol.2008.09.026
[7] T. Satoh, “High-Performance Carbohydrate Polymer Synthesized from Plant Source,” Bio-Industry, Vol. 26, No. 8, 2009, pp. 50-57.
[8] Kh. M. Mostafa, A. R. Samerkandy and A. A. El-Sanabay, “Modification of Carbohydrate Polymers. Part 2: Grafting of Methacrylamide onto Pregelled Starch Using Vanadium-Mercaptosuccinic Acid Redox Pair,” Journal of Applied Sciences Research, Vol. 3, No. 8, 2007, pp. 681- 689.
[10] A. B. Lowe, “Thiol-Ene ‘Click’ Reactions and Recent Applications in Polymer and Materials Synthesis,” Polymer Chemistry, Vol. 1, No. 1, 2010, pp. 17-36. doi:10.1039/b9py00216b
[11] C. E. Hoyle and C. N. Bowman, “Thiol-Ene Click Chemistry,” Angewandte Chemie International Edition, Vol. 49, No. 9, 2010, pp. 1540-1573. doi:10.1002/anie.200903924
[12] M. J. Kade, D. J. Burke and C. J. Hawker, “The Power of Thiol-Ene Chemistry,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 48, No. 4, 2010, pp. 743-750. doi:10.1002/pola.23824
[13] A. F. Jacobine, “Polymerization Mechanisms,” In: J. D. Fouassier and J. F. Rabek, Eds., Radiation Curing in Polymer Science and Technology III, Elsevier, London, 1993.
[14] R. A. Ortiz, D. P. López, M. L. G. Cisneros, J.C. R. Valverde and J. V. Crivello, “A Kinetic Study of the Acceleration Effect of Substituted Benzyl Alcohols on the Cationic Photopolymerization Rate of Epoxidized Natural Oils,” Polymer, Vol. 46, No. 5, 2005, pp. 1535-1541. doi:10.1016/j.polymer.2004.12.020
[15] R. A. Ortiz, A. E. G. Valdez, M. G. M. Aguilar and M. L. B. Duarte, “An Effective Method to Prepare Sucrose Polymers by Thiol-Ene Photopolymerization,” Carbohy-drate Polymers, Vol. 78, No. 2, 2009, pp. 282-286. doi:10.1016/j.carbpol.2009.03.045
[16] R. A. Ortiz, Y. A. R. Martínez, A. E. G. Valdez and M. L. B. Duarte, “Preparation of a Crosslinked Sucrose Polymer by Thiol-Ene Photopolymerization Using Dithiotreitol as Comonomer,” Carbohydrate Polymers, Vol. 82, No. 15, 2010, pp. 822-828. doi:10.1016/j.carbpol.2010.05.054
[17] A. E. G. Valdez, R. A. Ortiz, M. G. M. and M. L. B. Duarte, “Effect of the Degree of Substitution of the Diallyl Sucrose on the Reactivity and Physical and Mecha- nical Properties of the Polymers Obtained by the Thiol- Ene Photopolymerization Mechanism,” Current Trends in Polymer Science, Vol. 13, 2009, pp. 25-36.
[18] R. A. Ortiz, Y. A. R. Martinez and A. E. G. Valdez, “Pre- paration of Biobased Polymers Derived from Isosorbide by Means of Thiol-Ene Photopolymerization,” Journal of Biobased Materials and Bioenergy, Vol. 6, No. 1, 2012, pp. 1-6.
[19] C. E. Hoyle, T. Y. Lee and T. Roper, “Thiol-Enes: Chemistry of the Past with Promise for the Future,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, No. 21, 2004, pp. 5301-5338. doi:10.1002/pola.20366
[20] T. M. Roper, C. A. Guymon, E. S. Jonsson and C. E. Hoyle, “Influence of the Alkene Structure on the Mechanism and Kinetics of Thiol-Alkene Photopolymerizations with Real-Time Infrared Spectroscopy,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, No. 24, 2004, pp. 6283-6298. doi:10.1002/pola.20452
[21] N. B. Cramer and C. N. Bowman, “Kinetics of Thiol-Ene and Thiol-Acrylate Photopolymerizations with Real-Time Fourier Transform Infrared Spectroscopy,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 39, No. 19, 2001, pp. 3311-3319. doi:10.1002/pola.1314
[22] A. F. Jacobine, D. M. Glaser, P. J. Grabek, D. Mancini, M. Masterson, S. T. Nakos, M. A. Rakas and J. G. Woods, “Photocrosslinked Norbornene-Thiol Copolymers: Synthesis, Mechanical Properties, and Cure Studies,” Journal of Applied Polymer Science, Vol. 45, No. 3, 1992, pp. 471-483. doi:10.1002/app.1992.070450312

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.