Reduction of Cogging Torque in Permanent Magnet Flux-Switching Machines

DOI: 10.4236/jemaa.2009.11003   PDF   HTML     8,453 Downloads   16,705 Views   Citations

Abstract

Permanent magnet flux-switching machine (PMFSM) is a relatively new structure. Available literatures mainly focused on its general design procedure and performance analysis. In this paper, Finite Element Method (FEM) is taken to ana-lyze various design techniques to reduce the cogging torque in a prototype 12/10-pole PMFSM.

Share and Cite:

Y. Wang, J. Shen, Z. Fang and W. Fei, "Reduction of Cogging Torque in Permanent Magnet Flux-Switching Machines," Journal of Electromagnetic Analysis and Applications, Vol. 1 No. 1, 2009, pp. 11-14. doi: 10.4236/jemaa.2009.11003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. E. Rauch and L. J. Johnson, “Design principles of flux-switching alternators,” AIEE Transactions, Vol. 74III, pp. 1261–1268, 1955.
[2] E. Hoang, A. H. Ben Ahmed, and J. Lucidarme, “Switch-ing flux permanent magnet polyphased synchronous ma-chines,” EPE-97 Conference, Trondheim, September 1997.
[3] H. Wei, M. Cheng, J. Z. Zhang, and X. Y. Zhu, “Optimal design of flux-switching permanent magnet machine based on finite element analysis,” Electromagnetic Field Computation, pp. 333–333, 2006.
[4] H. Wei, M. Cheng, Z. Q. Zhu, and D. Howe, “Analysis and optimization of back-EMF waveform of a novel flux-switching permanent magnet motor,” Electric Ma-chines & Drives Conference, Vol 2, 3–5, pp.1025–1030, May 2007.
[5] Y. Amara, E. Hoang, M. Gabsi, M. Lecrivain, and S. Al-lano, “Design and comparison of different flux-switch synchronous machines for an aircraft oil breather applica-tion,” Proceedings 2nd IEEE International Conference on Signals, Systems, Decision and Information Technology, pp. 26–26, 2003.
[6] W. Z. Fei and J. X. Shen, “Novel permanent magnet switching flux motors,” 41st UPEC Conference, New Castle, pp. 729–733, September 2006.
[7] Y. Chen., Z. Q. Zhu., D. Howe. and Y. Y .Ye, “Starting torque of single-phase flux-switching permanent magnet motor,” IEEE Transactions on Magentics, Vol. 42, No. 10, pp. 3416–3418, October 2006.
[8] E. Hoang, A. H. Ben-Ahmed, and J. Lucidarme, “Switch-ing flux permanent magnet polyphased synchronous ma-chines,” Proceedings 7th European Conference Power Electron and Applications, Vol. 3, pp. 903–908, 1997.
[9] Z. Q. Zhu, Y. Pang, D Howe., S. Iwasaki, R. Deodhar, and A. Pride, “Analysis of electromagnetic performance of flux-switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model,” IEEE Transactions Magnetics, Vol. 41, No. 11, pp. 4277–4287, 2005.
[10] W. Hua, Z. Q. Zhu, M. Cheng, Y. Pang, and D. Howe, “Comparison of flux-switching and doubly-salient per-manent magnet brushless machines,” Proceedings 8th In-ternational Conference on Electrical Machines and Sys-tem, Vol. 1, pp. 165–170, 2005.
[11] S. M. Hwang, J. B. Eom, G. B. Hwang, W. B. Jeong, and Y. H. Jung, “Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing,” IEEE Transactions Magnetics, Vol. 36, No. 5, pp. 3144–3146, September 2000.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.