Implications of Nanobiosensors in Agriculture


Nanotechnology has emerged as a boon to the society with immense potential in varied area of research and our day-to-day life. The application of nanotechnology for the advancement of biosensor leads to an efficient nanobiosensor with miniature structure as compared to conventional biosensors. Nanobiosensors can be effectively used for sensing a wide variety of fertilizers, herbicide, pesticide, insecticide, pathogens, moisture, and soil pH. Taken together, proper and controlled use of nanobiosensor can support sustainable agriculture for enhancing crop productivity.

Share and Cite:

V. Rai, S. Acharya and N. Dey, "Implications of Nanobiosensors in Agriculture," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2A, 2012, pp. 315-324. doi: 10.4236/jbnb.2012.322039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Gruère, C. Narrod and L. Abbott, “Agriculture, Food, and Water Nanotechnologies for the Poor: Opportunities and Constraints,” IFPRI Policy Brief, Vol. 19, 2011.
[2] A. P. Turner, “Biosensors-Sense and Sensitivity,” Science, Vol. 290, No. 5495, 2000, pp. 1315-1317. doi:10.1126/science.290.5495.1315
[3] S. J. Updike and G. P. Hicks, “The Enzyme Electrode,” Nature, Vol. 214, 1967, pp. 986-988. doi:10.1038/214986a0
[4] J. M. Nelson and E. G. Grif?n, “Adsorption of Invertase,” Journal of the American Chemical Society, Vol. 38, No. 5, 1916, pp. 1109-1115. doi:10.1021/ja02262a018
[5] W. S. Hughes, “The Potential Difference between Glass and Electrolytes in Contact with the Glass,” Journal of the American Chemical Society, Vol. 44, No. 12, 1922, pp. 2860-2867. doi:10.1021/ja01433a021
[6] L. C. Clark, “Monitor and Control of Blood and Tissue Oxygen Tensions,” Transactions of the American Society for Artificial Internal Organs, Vol. 2, 1956, pp. 41-48.
[7] L.C. Clark Jr. and C. Lyons, “Electrode System for Continuous Monitoring in Cardiovascular Surgery,” Annals of the New York of Academy of Science, Vol. 148, No. 1962, pp. 133-153. doi:10.1111/j.1749-6632.1968.tb20346.x
[8] G. G. Guilbault and J. G. Montalvo, “A Urea-Specific Enzyme Electrode,” Journal of the American Chemical Society, Vol. 91, No. 8, 1969, pp. 2164-2165. doi:10.1021/ja01036a083
[9] P. Bergveld, “Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements,” IEEE Transactions on Biomedical Engineering, Vol. BM17, No. 1, 1970, pp. 70-71. doi:10.1109/TBME.1970.4502688
[10] K. Mosbach and B. Danielsson, “An Enzyme Thermistor,” Biochimica et Biophysica Acta (BBA)—Enzymology, Vol. 364, No. 1, 1974, pp. 140-145.
[11] D. W. Lubbers and N. Opitz, “The pCO2/pO2 Optrode: A New pCO2, pO2 Device for the Measurement of pCO2 or pO2 in Gases or Fluids,” Z. Naturforsch. C: Biosci., Vol. 30c, 1975, pp. 532-533.
[12] A. H. Clemens, P. H. Chang and R. W. Myers, “Development of an Automatic System of Insulin Infusion Controlled by Blood Sugar, Its System for the Determination of Glucose and Control Algorithms,” Proc. Journes Ann. de Diabtologie de l’Htel-Dieu, 1976, pp. 269-278.
[13] K. Cammann, “Biosensors Based on Ion-Selective Electrodes,” Fresenius Zeitschrift für Analytische Chemie, Vol. 287, No. 1, 1977, pp. 1-9. doi:10.1007/BF00539519
[14] M. Shichiri, R. Kawamori, R.Yamaski, Y. Hakai and H. Abe, “Wearable Artificial Endo-crine Pancreas with Needle-Type Glucose Sensor,” Lancet, Vol. 2, No. 8308, 1982, pp. 1129-1131. doi:10.1016/S0140-6736(82)92788-X
[15] A. E. G. Cass, D. G. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott and A. P. F. Turner, “Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose,” Analytical Chemistry, Vol. 56, No. 4, 1984, pp. 667-671. doi:10.1021/ac00268a018
[16] C. Kurzawa, A. Hengstenberg and W. Schuhmann, “Immobilization Method for the Preparation of Biosensors Based on pH Shift-Induced Deposition of Biomolecule-Containing Polymer Films,” Analytical Chemistry, Vol. 74, No. 2, 2002, pp. 355-361. doi:10.1021/ac010830a
[17] N. Mano, F. Mao and A. Heller, “Characteristics of a Miniature Compartment-Less Glucose-O2 Biofuel Cell and Its Operation in a Living Plant,” Journal of the American Chemical Society, Vol. 125, No. 21, 2003, pp. 6588-6594. doi:10.1021/ja0346328
[18] R. L. Weinstein, J. R. Bugler, S. L. Schwartz, T. A. Peyser, R. L. Brazg and G. V. McGarraugh, “Accuracy of the 5-Day Freestyle Navigator Continuous Glucose Monitoring System-Comparison with Frequent Laboratory Reference Measurements,” Diabetes Care, Vol. 30, No. 5, 2007, pp. 1125-1130. doi:10.2337/dc06-1602
[19] C. You, M. Bhagawati, A. Brecht and J. Piehler, “Affinity Capturing for Targeting Proteins into Micro and NANOSTRUCTURES,” Analytical and Bioanalyti-cal Chemistry, Vol. 393, No. 6-7, 2009, pp. 1563-1570. doi:10.1007/s00216-008-2595-6
[20] M. N. Velasco, “Optical Biosensors for Probing at the Cellular Level: A Review of Re-cent Progress and Future Prospects,” Seminars in Cell & Deve-lopmental Biology, Vol. 20, No. 1, 2009, pp. 27-33. doi:10.1016/j.semcdb.2009.01.013
[21] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter and Y. Sun, “Sensitive Optical Biosensors for Unlabeled Targets: A Review,” Analytica Chimica Acta, Vol. 620, No. 1-2, 2008, pp. 8-26. doi:10.1016/j.aca.2008.05.022
[22] V. K. Khanna, “New-Generation Nano-Engineered Biosensors, Enabling Nanotechnologies and Nanomaterials,” Sensor Review, Vol. 28, No. 1, 2008, pp. 39-45. doi:10.1108/02602280810850017
[23] A. Shana and K. R. Rogers, “Biosensors,” Measurement Science and Technology, Vol. 5, No. 5, 1994, pp. 461-472. doi:10.1088/0957-0233/5/5/001
[24] A. Cavalcanti, B. Shirinzadeh, M. Zhang and L. C. Kretly, “Nanorobot Hardware Architecture for Medical Defense,” Sensors, Vol. 8, No. 5, 2008, pp. 2932-2958. doi:10.3390/s8052932
[25] M. M. Cheng, “Nanotechnologies for Biomolecular Detection and Medical Diagnostics,” Current Opinion in Chemical Biology, Vol. 19, 2006, pp. 10-11.
[26] C. Ziegler, “Cantilever-Based Biosensors,” Analytical and Bio-analytical Chemistry, Vol. 379, No. 7-8, 2004, pp. 946-959.
[27] T. Vo-Dinh, “Optical Nanosensors for Detecting Proteins and Biomarkers in Individual Living Cells,” Methods in Molecular Biology, Vol. 300, 2005, pp. 383-402.
[28] A. J. Haes and R. P. Duyne, “Preliminary Studies and Potential Ap-plications of Localized Surface Plasmon Resonance Spectros-copy in Medical Diagnostics,” Expert Review of Molecular Diagnostics, Vol. 4, No. 4, 2004, pp. 527-537. doi:10.1586/14737159.4.4.527
[30] Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, Vol. 293, No. 12, 2001, pp. 89-92.
[31] B. A. Cornell, “Optical Biosensors: Present and Future,” In: F. Lighler and C. R. Taitt, Eds., Membrane Based Biosensors, Amsterdam Elsevier, Chapter 457, 2002, p. 12.
[32] K. K. Jain, “Nanotechnology in clinical Laboratory Diagnostics,” Clinica Chimica Acta, Vol. 358, No. 1-2, 2005, pp. 37-54. doi:10.1016/j.cccn.2005.03.014
[33] J. M. Perez, F. J. Simeone, Y. Saeki, L. Josephson and R. Weissleder, “Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media,” Journal of the American Chemical Society, Vol. 125, No. 34, 2003, pp. 10192-10193. doi:10.1021/ja036409g
[34] H. A. Clark, “Optical Nanosensors for Chemical Analysis Inside Single Living Cells, 1: Fabrication, Characterization, and Methods for Intracellular Delivery of PEEBLE Sensors,” Analytical Chemistry, Vol. 71, No. 21, 1999, pp. 4831-4836. doi:10.1021/ac990629o
[35] H. A. Clark, “Optical Nanosensors for Chemical Analysis inside Single Living Cells, 2: Sensors for pH and Calcium and the Intracellular Application of PEEBLE Sensors,” Analytical Chemistry, Vol. 71, No. 21, 1999, pp. 4837- 4843. doi:10.1021/ac990630n
[36] J. P. Sumner, J. W. Aylott, E. Monson and R. Kopelman, “A Fluorescent PEBBLE Nanosensor for Intracellular Free Zinc,” Analyst, Vol. 127, 2002, pp. 11-16. doi:10.1039/b108568a
[37] Y. Cao, Y.E. Lee Koo and R. Kopelman, “Poly(decyl methacrylate)-Based Fluorescent PEBBLE Swarm Nano- sensors for Measuring Dissolved Oxygen in Biosamples,” Analyst, Vol. 129, No. 7, 2004, pp. 45-50.
[38] L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas and J. L. West, “A Whole Blood Immunoassay Using Gold Nano- shells,” Analytical Chemistry, Vol.75, No. 23, 2003, pp. 77-81.
[39] _1/20040402_1.html
[40] M. C. DeRosa, C. Monreal, M. Schnitzer, R. Walsh and Y. Sultan, “Nanotechnology in Fertilizers,” Nature Nanotechnology, Vol. 5, 2010, p. 91. doi:10.1038/nnano.2010.2
[41] M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe and A. S. Biris, “Carbon Nanotubes Are Able to Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth,” ACS Nano, Vol. 3, No. 10, 2009, pp. 3221-3227. doi:10.1021/nn900887m
[42] D. H. Lin and B. S. Xing, “Root Uptake and Phytotoxicity of ZnO Nanoparticles,” Environmental Science & Technology, Vol. 42, No. 15, 2008, pp. 5580-5585. doi:10.1021/es800422x
[43] C. Lauderwasser, “Small Sizes That Matter: Opportunities and Risks of Nanotechnologies,” Report in cooperation with the OECD International Futures Programme.
[44] V. Vamvakaki and N. A. Chaniotakis, “Pesticide Detection with a Liposome-Based Nano-Biosensor,” Biosensors and Bioelec-tronics, Vol. 22, No. 12, 2007, pp. 2848- 2853. doi:10.1016/j.bios.2006.11.024
[45] W. Zhang, H. Tang, P. Geng, Q. Wang, L. Jin and Z. Wu, “Amperometric Method for Rapid Detection of Escherichia coli by Flow Injection Analysis Using a Bismuth Nano-Film Modified Glassy Carbon Electrode,” Electrochemistry Communications, Vol. 9, 4, 2007, pp. 833-838. doi:10.1016/j.elecom.2006.11.019
[46] S. Seo, M. Dobozi-King, R. F Young, L. B. Kish and M. Cheng, “Pattern-ing a Nanowell Sensor Biochip for Specific and Rapid Detection of Bacteria,” Microelectronic Engineering, Vol. 85, No. 7, 2008, pp. 1484-1489. doi:10.1016/j.mee.2007.12.046
[47] M. T. Giardi and E. V. Piletska, “Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices,” Biotechnology Intelligence Unit copublished by Land Biosciences and Springer, 2006.
[48] C. Cao, J. H. Kim, D. Yoon, E. S. Hwang, Y. J. Kim and S. Baik, “Optical Detection of DNA Hybridization Using Absorption Spectra of Single-Walled Carbon Nanotubes,” Materials Chemistry and Physics, Vol. 112, No. 3, 2008, pp. 738-741. doi:10.1016/j.matchemphys.2008.07.129
[49] W. Zhang, T. Yang, D. Huang, K. Jiao and G. Li, “Synergistic Effects of Nano-ZnO/Multi-Walled Carbon Nanotubes/Chitosan Nanocomposite Membrane for the Sensitive Detection of Sequence Specific of PAT Gene and PCR Amplification of NOS Gene,” Journal of Membrane Science, Vol. 325, 2008, pp. 245-251. doi:10.1016/j.memsci.2008.07.038
[50] W. Zhang, T. Yang, D. M. Huang and K. Jiao, “Electrochemical Sensing of DNA Im-mobilizationand Hybridization Based on Carbon Nano-tubes/Nano Zinc Oxide/ Chitosan Composite Film,” Chinese Chemical Letters, Vol. 19, 2008, pp. 589-591. doi:10.1016/j.cclet.2008.03.012
[51] J. Galandova, G. Ziyatdinova and J. Labuda, “Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes-Chitosan Composite Layer for the Detection of Deep DNA Damage,” Analytical Science, Vol. 24, No. 6, 2008, pp. 711-716. doi:10.2116/analsci.24.711
[52] F. McKenzie, K. Faulds and D. Graham, “Sequence- Specific DNA Detection Using High-Affinity LNA- Functionalized Gold Nanoparticles,” Small, Vol. 3, 2007, pp. 1866-1868. doi:10.1002/smll.200700225
[53] Y. Ma, K. Jiao, T. Yang and D. Sun, “Sensitive PAT Gene Sequence Detection by Na-no-SiO2/Paminothiophenol Self-Assembled Films DNA Elec-trochemical Biosensor Based on Impedance Measurement,” Sensors and Actuators B, Vol. 131, No. 2, 2008, pp. 565-571. doi:10.1016/j.snb.2007.12.046
[54] W. C. Maki, N. N. Mishra, E. G. Cameron, B. Filanoski, S. K. Rastogi and G. K. Maki, “Nanowiretransistor Based Ultra-Sensitive DNA Methylation Detection,” Biosensor and Bioelectronics, Vol. 23, No. 6, 2008, pp. 780-787. doi:10.1016/j.bios.2007.08.017
[56] ETC Group, “The Potential Impacts of Nano-Scale Technologies,” Meridian Institute, Nanotechnology, Commodities, and Development.
[57] G. Gruère and D. Sengupta, “GM-Free Private Standards and Their Effects on Biosafety Decision-Making in Developing Countries,” Food Policy, Vol. 34, No. 5, 2009, pp. 399-406. doi:10.1016/j.foodpol.2009.04.002
[58] B. Lyndhurst, “An Evidence Review of Public Attitudes to Emerging Food Technologies, Social Science Research Unit,” Food Standards Agency, Vol. 89, 2010.
[59] M. Siegrist, N. Stampfli and H. Kastenholz, “Acceptance of Nanotechnology Foods: A Conjoint Study Examining Consumers’ Willingness to Buy,” British Food Journal, Vol. 111, No. 7, 2009, pp. 660-668. doi:10.1108/00070700910972350
[60] D. Sylvester, K. Abbott and G. Marchant, “Not Again! Public Perception, Regulation, and Nanotechnology,” Regulation and Governance, Vol. 3, No. 2, 2009, pp. 165-185. doi:10.1111/j.1748-5991.2009.01049.x
[61] K. Lyons, “Nanotechnology: Transforming Food and the Environment,” Food First Backgrounder, Vol. 16, No. 1, 2010, pp. 1-4.
[62] E. Court, S. Daar, E. Martin, T. Acharya and P. Singer, “Will Prince Charles et al. Diminish the Opportunities of Developing Countries in Nanotechnology?” 2004.
[64] R. Harrington, “Nano Risk Assessment a Work in Progress,” 2010.
[65] J. Falck-Zepeda, A. Cavialeri and P. Zambrano, “Delivering Genetically Engineered Crops to Poor Farmers: Recommendations for Improved Biosafety Regulations in Developing Countries,” IFPRI Brief 14, International Food Policy Research Institute, Washington DC, 2009.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.