Multifunctional Biocompatible Fluorescent Carboxymethyl Cellulose Nanoparticles


A multifunctional nanoparticle based on carboxymethyl cellulose was developed. Folate group was attached to nanoparticle for specific recognition of cancerous cells and 5FU was encapsulated for delivering cytotoxicity. The whole system was able to track by the semiconductor quantum dots that were attached to the nanoparticle. The multifunctional nanoparticle was characterized by UV-VIS spectra, PL spectra, FTIR, TEM, SEM etc and was targeted to human breast cancer cell, MCF7. The biocompatibility of nanoparticle without drug and cytotoxicity rendered by nanoparticle with drug was studied with MCF7 and L929 cell lines. The epifluorescent images suggest that the folate-conjugated nanoparticles were more internalized by folate receptor positive cell line, MCF7 than the noncancerous L929 cells.

Share and Cite:

R. Girija Aswathy, B. Sivakumar, D. Brahatheeswaran, S. Raveendran, T. Ukai, T. Fukuda, Y. Yoshida, T. Maekawa and D. Nair Sakthikumar, "Multifunctional Biocompatible Fluorescent Carboxymethyl Cellulose Nanoparticles," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2A, 2012, pp. 254-261. doi: 10.4236/jbnb.2012.322031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. E Reisner, “Bionanotechnology: Global Prospects,” CRC Press, Taylor & Francis Group, Boca Raton, 2009
[2] V. P. Torchilin, “Multifunctional Nanocarriers,” Advanced Drug Delivery Reviews, Vol. 58, No. 14, 2006, pp. 1532-1555. doi:10.1016/j.addr.2006.09.009
[3] N. Sanvicens and M. P. Marco, “Multifunctional Nanoparticles—Properties and Prospects for Their Use in Human Medicine,” Trends in Biotechnology, Vol. 26, No. 8, 2008, pp. 425-433. doi:10.1016/j.tibtech.2008.04.005
[4] K. S. Soppimath, T. M. Aminabhavi, A. R Kulkarni and W. E. Rudzinski, “Biodegradable Polymeric Nanoparticles as Drug Delivery Devices,” Journal of Controlled Release, Vol. 70, No. 1-2, 2000, pp. 1-20. doi:10.1016/S0168-3659(00)00339-4
[5] K.-T. Yong, I. Roy, M. T. Swihart and P. N. Prasad, “Multifunctional Nanoparticles as Biocompatible Targeted Probes for Hu-man Cancer Diagnosis and Therapy,” Journal of Materials Chemistry, Vol. 19, No. 27, 2009, pp. 4655-4672. doi:10.1039/b817667c
[6] J. H. Gao, H. W. Gu and B. Xu, “Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications,” Accounts of Chemical Research, Vol. 42, No. 8, 2009, pp. 1097-1107. doi:10.1021/ar9000026
[7] J. Kim, Y. Z. Piao and T. Hyeon, “Multifunctional Nanostructured Materials for Multimodal Imaging, and Simultaneous Imaging and Therapy,” Chemical Society Reviews, Vol. 38, No. 2, 2009, pp. 372-390. doi:10.1039/b709883a
[8] D. R. Biswal and R. P. Singh, “Characterisation of Carboxymethyl cellulose and Polya-crylamide Graft Copolymer,” Carbohydrate Polymers, Vol. 57, No. 4, 2004, pp. 379-387. doi:10.1016/j.carbpol.2004.04.020
[9] J. Pan and S. S. Feng, “Targeting and Imaging Cancer Cells by Folate Decorated Quantum Dots Loaded Nanoparticle of Bio-degradable Polymers,” Biomaterials, Vol. 30, No. 6, 2009, pp. 1176-1183. doi:10.1016/j.biomaterials.2008.10.039
[10] M. E. Mathew, J. C. Mohan, K. Manzoor, S.V. Nair, H. Tamura and R. Jayakumar, “Folate Conjugated Carboxymethyl Chitosan-Manganese Doped Zinc Sulphide Nanoparticles for Targeted Drug Delivery and Imaging of Cancer Cells,” Carbohydrate Polymers, Vol. 80, No. 2, 2010, pp. 442-448. doi:10.1016/j.carbpol.2009.11.047
[11] M. Brucher Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science, Vol. 281, No. 5385, 1998, pp. 2013-2016. doi:10.1126/science.281.5385.2013
[12] C. B Murray, D. J. Norris and M. G. Baewndi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” Journal of the American Chemical Society, Vol. 115, No. 19, 1993, pp. 8706-8715. doi:10.1021/ja00072a025
[13] M. A Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” Journal of Physical Chemistry, Vol. 100, No. 2, 1996, pp. 468-471. doi:10.1021/jp9530562
[14] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” The Journal of Physical Chemistry B, Vol. 101, No. 46, 1997, pp. 9463-9475. doi:10.1021/jp971091y
[15] K. Manzoor, S. Johny, D. Thomas, S. Setua, D. Menon and S. Nair, “Bio-Conjugated Luminescent Quantum Dots of Doped ZnS: A Cyto-Friendly System for Targeted Cancer Imaging,” Nanotechnology, Vol. 20, No. 6, 2009, Article ID 065102. doi:10.1088/0957-4484/20/6/065102
[16] J. Zhang, S. Rana, R.S. Srivastava and R. D. K. Misra, “On the Chemical Synthesis and Drug Delivery Response of Folate Receptor-Activated, Polyethylene Glycol Functionalized Magnetic Nanoparticles,” Acta Biomaterialia, Vol. 4, No. 1, 2008, pp. 40-48. doi:10.1016/j.actbio.2007.06.006
[17] B. S. Rema Devi, R. Raveendran and A. V. Vaidyan, “Synthesis and Characterization of Mn2+-Doped ZnS Nanoparticles,” Pramana-Journal of Physics, Vol. 68, No. 4, 2007, pp. 679-687. doi:10.1007/s12043-007-0068-7

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.