Share This Article:

Mesolamellar composite of TiN and CTAB using fluoride ion bridge: synthesis, mechanism & characterization

Abstract Full-Text HTML Download Download as PDF (Size:1162KB) PP. 464-468
DOI: 10.4236/ns.2010.25057    4,585 Downloads   9,279 Views  

ABSTRACT

In an attempt to synthesize hexagonal mesopo- rous titanium nitride, a mesolamellar composite based on titanium nitride and cetyltrimethylam- monium bromide (CTAB) is obtained by the sol-gel route involving templating at 80oC. The mechanism underlying the above synthesis is discussed for the first time in the literature and till date there are no reports on the synthesis of mesoporous nitrides. The above mesolamellar composite is found to form an oxide of titania (anatase) upon heat treatment at 335oC for 1h.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Anuradha, T. (2010) Mesolamellar composite of TiN and CTAB using fluoride ion bridge: synthesis, mechanism & characterization. Natural Science, 2, 464-468. doi: 10.4236/ns.2010.25057.

References

[1] Huang, Y. and Sachtler, W.M.H. (1997) Preparation of mesostructured lamellar zirconia. Chemistry Communi-cation, 1181-1182.
[2] Tanev, P.T. and Pinnavaia, T.J. (1996) Biomimetic tem-plating of porous lamellar silicas by vesicular surfactant assemblies. Science, 271(5253), 1267-1269.
[3] Fernado Henrique, P.S. and Pastore, H.O. (1996) Chem-istry Communication, 7, 833-835.
[4] Feng, P., Xia, Y., Feng, J., Bu, X. and Stucky, G.D. (1997) Synthesis and characterization of mesostructured alumi-nophosphates using the fluoride route. Chemistry Com-munication, 949-950.
[5] Luan, Z., Zhao, D., He, H., Klinowski, J. and Kevan, L. (1998) Tubular aluminophosphate mesoporous materials containing framework silicon, vanadium and Manganese. Journal of Physics and Chemistry B., 102(20), 1250- 1259.
[6] Kimura, T., Sugahara, Y. and Kuroda, K. (1999) Synthe-sis and characterization of lamellar and hexagonal meso-structured aluminophosphates using alkyltrimethy- lam-monium cations as structure directing agents. Chemical Materials, 11, 508-518.
[7] Froba, M. and Tiemann, M. (1998) Chemical Materials, 10(11), 3475-3483.
[8] Sayari, A., Moudrakovski, I., Reddy, J.S., Rateliffe, C.I., Ripmeester, J.A. and Preston, K.F. (1996) Chemical Ma-terials, 8, 2080.
[9] Tiemann, M., Schulz, M., Jager, C. and Froba, M. (2001) Mesoporous aluminophosphate molecular sieves synthe-sised under non-aqueous conditions. Chemical Materials, 13(9), 2885-2891.
[10] Kaskel, S. and Schlichte, K. (2001) Porous silicon nitride as a superbase catalyst, Journal of Catalysis, 201, 270-274.
[11] Kaskel, S., Farrusseng, D. and Schlichte, K. (2000) Syn-thesis of mesoporous silicon imido nitride with high sur-face area and narrow pore size distribution. Chemistry Communication, 2481-2482.
[12] Anuradha, T.V. and Ranganathan, S. (1999) A comparison of the efficiency of three different synthetic routes viz. sol-gel method involving templating, mechanochemical synthesis and combustion synthesis for the production of nanostructured TiO2. Nanostructured Materials, 12, 1063-1073.
[13] Anuradha, T.V. and Ranganathan, S. (2000) Proceedings of International Symposium on Amorphous and Nano- crystalline Materials (Satellite Meeting of NANO-2000), Inoue, A., Ed., Japan Society for the Promotion of Science, 1.
[14] Tolbert, S.H., Sieger, P., Stucky, G.D., Aubin, S.M.J., Wu, C-.C. and Hendrickson, D.N. (1997) Control of inorganic layer thickness in self-assembled iron oxide/surfa- ctant composites. Journal of American Chemical Society, 119(37), 8652-8661.
[15] Lin, W., Pang, W., Sun, J. and Shen, J. (1999) Lamellar TiO2 mesophase with an unusual room temperature pho-toluminescence. Journal of Material Chemistry, 9, 641-642.
[16] Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppared, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L. (1992) Journal of American Chemical Society, 114(27), 10834-10843.
[17] Tanev, P.T. and Pinnavaia, T.J. (1995) A neutral templating route to mesoporous molecular sieves. Science, 267(5199), 865-867.
[18] Gao, Q., Chen, J., Xu, R. and Yue, Y. (1997) Chemistry of Materials, 9, 457-462.
[19] Tiemann, M., Froba, M., Rapp, G. and Funari, S.S. (2000) Nonaqueous synthesis of mesostructured aluminophos-phate/surfactant composites: synthesis, characterization, and in-situ SAXS studies. Chemistry of Materials, 12(207), 1342-1348.
[20] Huo, Q., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schuth, F. and Stucky, G.D. (1994) Chemistry of Mate-rials, 6(8), 1176-1191.
[21] Zhang, H. and Banfield, J.F. (1998) Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles. Journal of Material Chemistry, 8, 2073- 2076.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.