Gelatin-Modified Biomimetic Apatite Coatings

DOI: 10.4236/jbnb.2012.32021   PDF   HTML     4,508 Downloads   7,245 Views   Citations


Biomimetic coatings constituted of gelatin and nanocrystalline apatite were deposited on titanium substrates from a slightly supersaturated calcium phosphate (CaP) solution enriched with different amounts of gelatin. Although the biopolymer inhibits the crystallization of the inorganic phase, as shown by the reduction of the mean dimensions of the spherical aggregates and of the degree of crystallinity of the apatitic phase on increasing gelatin concentration, the deposition of a uniform layer of nanocrystalline apatite takes place in a few hours. Gelatin incorporation into the precipitate increases on increasing its concentration in solution, up to about 20 wt%. Osteoblast-like MG63 cells cultured on the coatings display good proliferation and increased values of the differentiation parameters with respect to the control. The presence of gelatin improves significantly the biological response to the biomimetic coatings, as shown by the higher values of proliferation, collagen type I and osteocalcin production, as well as alkaline phosphatase activity stimulation.

Share and Cite:

B. Bracci, P. Torricelli, S. Panzavolta, K. Rubini, M. Fini and A. Bigi, "Gelatin-Modified Biomimetic Apatite Coatings," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 154-162. doi: 10.4236/jbnb.2012.32021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. R. Paital and N. B. Dahotre, “Calcium phosphate Coatings for Bio-Implant Applications: Materials, Performance Factors, and Methodologies,” Materials Science and Engineering, Vol. 66, No. 1-3, 2009, pp. 1-70. doi:10.1016/j.mser.2009.05.001
[2] I. N. Mihailescu, C. Ristoscu, A. Bigi and I. Mayer. “Advanced Biomimetic Implants Based on Nanostructured Coatings Synthesized by Pulsed Laser Technologies,” In: A. Miotello and P. M. Ossi, Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, Springer, Berlin, 2009, pp. 235-260.
[3] A. W. G. Nijhuis, S. C. G. Leeuwenburgh and J. A. Jansen, “Wet-Chemical Deposition of Functional Coatings for Bone Implantology,” Macromolecular Bioscience, Vol. 10, No. 11, 2010, pp. 1316-1329. doi:10.1002/mabi.201000142
[4] E. Boanini, M. Gazzano and A. Bigi, “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature,” Acta Biomaterialia, Vol. 6, No. 6, 2010, pp. 1882-1894.doi:10.1016/j.actbio.2009.12.041
[5] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, “Solutions Able to Reproduce in Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3,” Journal of Biomedical Materials Research, Vol. 24, No. 6, 1990, pp. 721-734. doi:10.1002/jbm.820240607
[6] A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti and L. Sturba “Nanocrystalline Hydroxyapatite Coatings on Titanium: A New Fast Biomimetic Method,” Biomaterials, Vol. 26, No. 19, 2005, pp.4085-4089. doi:10.1016/j.biomaterials.2004.10.034
[7] Y. Liu, G. Wu and K. de Groot, “Biomimetic Coatings for Bone Tissue Engineering Of Critical-Sized Defects,” Journal of the Royal Society Interface, Vol. 7, No. S5, 2010, pp. S631-S647. doi:10.1098/rsif.2010.0115.focus
[8] A. Pasinli, M. Yuksel, E. Celik, S. Sener and A. C. Tas, “A New Approach in Biomimetic Synthesis of Calcium Phosphate Coatings Using Lactic Acid-Na Lactate Buffered Body Fluid Solution,” Acta Biomaterialia, Vol. 6, No. 6, 2010, pp. 2282-2288. doi:10.1016/j.actbio.2009.12.013
[9] Z. Wu, B. Feng, J. Weng, S. Qu, J. Wang and X. Lu, “Biomimetic Apatite Coatings on Titanium Coprecipitated with Cephradine and salviae miltlorrhizae,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 84B, No. 2, 2008, pp. 486-492. doi:10.1002/jbm.b.30895
[10] F. Barrere, C. M. van der Valk, G. Meijer, R. A. J. Dalmeijer, K. de Groot and P. Layrolle, “Osteointegration of Biomimetic Apatite Coating Applied onto Dense and Porous Metal Implants in Femurs of Goats,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 67B, No. 1, 2003, pp. 655-665. doi:10.1002/jbm.b.10057
[11] A. L. Oliveira, R. L. Reis and P. Li, “Strontium-Substituted Apatite Coating Grown on Ti6Al4V Substrate through Biomimetic Synthesis,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 83B, No. 1, 2007, pp. 258-265. doi:10.1002/jbm.b.30791
[12] B. Bracci, P. Torricelli, S. Pan-zavolta, E. Boanini, R. Giardino and A. Bigi, “Effect of Mg2+, Sr2+, and Mn2+ on the Chemico-Physical and in Vitro Biological Properties of Calcium Phosphate Biomimetic Coatings,” Journal of Inorganic Biochemistry, Vol. 103, No. 12, 2009, pp. 1666-1674. doi:10.1016/j.jinorgbio.2009.09.009
[13] C. Chen, I. S. Lee, S. M. Zhang and H. C. Yang, “Biomimetic Apatite Formation on Calcium Phosphate-Coated Titanium in Dulbec-co’s Phosphate-Buffered Saline Solution Containing CaCl2 with and without Fibronectin,” Acta Biomaterialia, Vol. 6, No. 6, 2010, pp. 2274-2281. doi:10.1016/j.actbio.2009.11.033
[14] Y. Liu, P. Layrolle, J. de Bruijn, , C. van Blitterswijk and K. de Groot, “Biomimetic Coprecipitation of Calcium Phosphate and Bovine Serum Al-bumin on Titanium Alloy”, Journal of Biomedical Materials Research, Vol. 57, No. 3, 2001, pp. 327-335. doi:10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J
[15] Y. Liu, J. P. Li, E. B. Hunziker and K. de Groot, “Incorporation of growth factors into medical devices via biomimetic coatings,” Philosophical Transactions of the Royal Society A, Vol. 364, No. 1838, 2006, pp. 233-248. doi:10.1098/rsta.2005.1685
[16] L. N. Luong, S. I. Hong, R. J. Patel, M. E. Outslay and D. H. Kohn “Spatial Control of Protein within Biomimetically Nucleated Mineral,” Biomaterials, Vol. 27, No. 7, 2006, pp. 1175-1186. doi:10.1016/j.biomaterials.2005.07.043
[17] X. Yu, H. Qu, D. A. Knecht and M. Wei, “Incorporation of Bovine Serum Albu-min into Biomimetic Coatings on Titanium with High Loading Efficacy and Its Release Behavior,” Journal of Materials Science: Materials in Medicine, Vol. 20, No. 1, 2009, pp. 287-294. doi:10.1007/s10856-008-3571-6
[18] Y. Chen, A. F. T. Mak, M. Wang, J. S. Li and M. S. Wong, “In Vitro Behavior of Os-teoblast-Like Cells on PLLA Films with a Biomimetic Apatite or Apatite/Collagen Composite Coating,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 6, 2008, pp. 2261-2268. doi:10.1007/s10856-007-3335-8
[19] K. Hu, X. J. Yang, Y. L. Cai, Z. D. Cui, Q. Wei, “Preparation of Bone-Like Composite Coating Using a Modified Simulated Body Fluid with high Ca and P Concentrations,” Surface and Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 1902-1906. doi:10.1016/j.surfcoat.2006.02.036
[20] S. Lee, D. Suarez-Gonzales and W. Murphy, “Mineral Coatings for Temporally Controlled Delivery of Multiple Proteins,” Advanced Materials, Vol. 23, No. 37, 2011, pp. 4279-4284. doi:10.1002/adma.201100060
[21] X. J. Yang , C. Y. Liang, Y. L. Cai, K. Hu, Q. Wei and Z. D. Cui, “Recombinant Human-Like Collagen Modulated the Growth of Nano-Hydroxyapatite on NiTi alloy,” Materials Science and Engineering C, Vol. 29, No. 1, 2009, pp. 25-28. doi:10.1016/j.msec.2008.05.006
[22] A. Bigi, S. Panzavolta and K. Rubini, “Relationship Between Triple Helix Content and Mechanical Properties of Gelatin Films,” Biomaterials, Vol. 25, No. 25, 2004, pp. 5675-5680. doi:10.1016/j.biomaterials.2004.01.033
[23] G. Tronci, A. T. Neffe, B. F. Pierce and A. Lendlein, “An Entropy–Elastic Gela-tin-Based Hydrogel System,” Journal of Materials Chemistry, Vol. 20, No. 40, 2010, pp. 8875-8884. doi:10.1039/c0jm00883d
[24] J.F. Mano, “Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends,” Journal of the Royal Society Interface, Vol. 4, No. 17, 2007, pp. 999-1030. doi:10.1098/rsif.2007.0220
[25] A. Bigi, N. Nicoli-Aldini, B. Bracci, B. Zavan, E. Boanini, F. Sbaiz, S. Panzavolta, G. Zorzato, R. Giardino, A. Facchini, G. Abatangelo and R. Cortivo, “In Vitro Culture of Mesenchymal Cells onto Nanocrystalline Hydroxyapa-tite-Coated Ti13Nb13Zr Alloy,” Journal of Biomedical Materials Research Part A, Vol. 82, No. 1, 2007, pp. 213- 221. doi:10.1002/jbm.a.31132
[26] R. Chiesa, E. Sandrini, M. Santin, E. Rondelli, A. Cigada, “Osteointegration of Titanium and Its Alloys by Anodic Spark Deposition and other Electrochemical Tecniques: A Review,” Journal of Applied Biomaterials and Biome-chanic, Vol. 1, No. 2, 2003, pp. 91-107.
[27] A. Bigi, G. Cojazzi, M. H. J. Koch, G. Pizzuto, A. Ripamonti and N. Roveri, “Structural Analysis of Turkey Tendon Collagen upon Removal of the Inorganic Phase,” International Journal of Biological Macromolecules, Vol. 13, No. 2, 1991, pp. 110-114. doi:10.1016/0141-8130(91)90058-3
[28] S. Busch, U. Schwarz and R. Kniep, “Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Fluorapatite-Gelatin Composites,” Chemistry Materials, Vol. 13, No. 10, 2001, pp. 3260-3271. doi:10.1021/cm0110728
[29] M. Iijima, Y. Moriwaki, T. Takagi and J. Moradian-Oldak, “Effects of Bovine Amelogenins on the Crystal Morphology of Octacalcium Phosphate in a Model System of Tooth Enamel Formation,” Journal of Crystal Growth, Vol. 222, No. 3, 2001, pp. 615-626. doi:10.1016/S0022-0248(00)00984-2
[30] A. Bigi, S. Panzavolta and K. Rubini, “Setting Mechanism of a Biomimetic Bone Cement,” Chemistry Materials, Vol. 16, No. 19, 2004, pp. 3740-3745. doi:10.1021/cm049363e

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.