A Variational Approach for Numerically Solving the Two-Component Radial Dirac Equation for One-Particle Systems

Abstract

In this paper we propose a numerical approach to solve the relativistic Dirac equation suitable for computational calculations of one-electron systems. A variational procedure is carried out similar to the well-known Hylleraas computational method. An application of the method to hydrogen isoelectronic atoms is presented, showing its consistency and high accuracy, relative to the exact analytical eigenvalues.

Share and Cite:

A. Fonseca, D. Nascimento, F. Monteiro and M. Amato, "A Variational Approach for Numerically Solving the Two-Component Radial Dirac Equation for One-Particle Systems," Journal of Modern Physics, Vol. 3 No. 4, 2012, pp. 350-354. doi: 10.4236/jmp.2012.34048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Dolbeault, M. J. Esteban, E. Séré, and M. Van Breugel, “Minimization Methods for the One-Particle Dirac Equation,” Physical Review Letters, Vol. 85, No. 19, 2000, pp. 4020-4023. doi:10.1103/PhysRevLett.85.4020
[2] A. Rutkowski, “Iterative Solution of the One-Electron Dirac Equation Based on the Bloch Equation of the Direct Perturbation Theory,” Chemical Physics Letters, Vol. 307, No. 3-4, 1999, pp. 259-264. doi:10.1016/S0009-2614(99)00520-5
[3] J. D. Talman, “Minimax Principle for the Dirac Equation,” Physical Review Letters, Vol. 57, No. 9, 1986, pp. 1091-1094. doi:10.1103/PhysRevLett.57.1091
[4] H. H. Nakatsuji and H. Nakashima, “Analytically Solving the Relativistic Dirac-Coulomb Equation for Atoms and Molecules,” Physical Review Letters, Vol. 95, No. 5, 2005, Article ID 050407. doi:10.1103/PhysRevLett.95.050407
[5] W. Kutzelnigg, “Basis Set Expansion of the Dirac Operator without Variational Collapse,” International Journal of Quantum Chemistry, Vol. 25, No. 1, 1984, pp. 107- 129. doi:10.1002/qua.560250112
[6] A. Wolf, M. Reiher and B. A. Hess, “The Generalized Douglas-Kroll Transformation,” Journal of Chemical Physics, Vol. 117, No. 20, 2002, pp. 9215-9226. doi:10.1063/1.1515314
[7] J. Dolbeault, M. J. Esteban and E. Séré, “A variational Method for Relativistic Computations in Atomic and Molecular Physics,” International Journal of Quantum Chemistry, Vol. 93, No. 3, 2003, pp. 149-155. doi:10.1002/qua.10549
[8] R. Franke, “Numerical Study of the Iterative Solution of the One-Electron Dirac Equation Based on Direct Perturbation Theory,” Chemical Physics Letters, Vol. 264, No. 5, 1997, pp. 495-501. doi:10.1016/S0009-2614(96)01361-9
[9] A. Surzhykov, P. Koval and S. Fritzsche, “Algebraic Tools for Dealing with the Atomic Shell Model. I. Wavefunctions and Integrals for Hydrogen-Like Ions”, Computer Physics Communications, Vol. 165, No. 2, 2005, pp. 139-156. doi:10.1016/j.cpc.2004.09.004
[10] S. McConnell, S. Fritzsche and A. Surzhykov, “DIRAC: A New Version of Computer Algebra Tools for Studying the Properties and Behavior of Hydrogen-Like Ions,” Computer Physics Communications, Vol. 181, No. 3, 2010, pp. 711-713. doi:10.1016/j.cpc.2009.11.010
[11] G. W. F. Drake and S. P. Goldman, “Application of Discrete-Basis-Set Methods to the Dirac Equation,” Physical Review A, Vol. 23, No. 5, 1981, pp. 2093-2098. doi:10.1103/PhysRevA.23.2093
[12] D. L. Nascimento and A. L. A. Fonseca, “A 2D Spin Less Version of Dirac’s Equation Written in a Noninertial Frame of Reference,” International Journal of Quantum Chemistry, Vol. 111, No. 7, 2011, pp. 1361-1369. doi:10.1002/qua.22657
[13] P. A. M. Dirac, “The Quantum Theory of the Electron,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 117, No. 778, 1928, pp. 610-624. doi:10.1098/rspa.1928.0023
[14] H. Goldstein, “Classical Mechanics,” 2nd Edition, Add.- Wesley Reading Mass., New York, 1980.
[15] A. L. A. Fonseca and D. L. Nascimento, “New Approach to Researches in Relativistic Quantum Chemistry Using Hamilton-Jacobi Equation,” In: Quantum Chemistry Research Trends, Nova Science Publishers, Inc, New York, 2007, pp. 173-204.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.