Electrospun Nanofiber Membranes Containing Molecularly Imprinted Polymer (MIP) for Rhodamine B (RhB)


A simple method for the formation of molecularly imprinted membrane of Rhodamine B (RhB) was developed by electrospinning. RhB molecularly imprinted microspheres were produced by precipitation polymerization using RhB, acrylamide, ethylene glycol dimethacrylatea (EGDMA), azobisisobutyronitrile (AIBN) and acetonitrile as template, functional monomer, cross-linking agent, initiator and porogen, respectively. Then molecularly imprinted membranes (MIMs) were produced via electrospinning technique with polyethylene terephthalate (PET) as the matrix polymer. The as-prepared nanofiber membranes were characterized by scanning electron microscopy (SEM). Optimization studies with the aim to enhance the MIP selection adsorption were carried out with respect to the amount of membrane, pH and adsorption time. Linear range and detection limit were 0.01 ~ 20 μmol/L and 2.0 × 10-3 μmol/L, respectively. HPLC analysis showed that in the optimized conditions of separation and enrichment, the recovery rate can reach 97.8% ~ 117.1%, relative standard deviation (n = 3) was 1.36% ~ 2.19% in employing MIMs to the RhB simulated water samples. The results showed that the imprinted polymer exhibited higher affinity for Rhodamine B compared to non-molecularly imprinted polymers membranes (NIMs) and molecularly imprinted particles (MIP).

Share and Cite:

Li, L. , Liu, H. , Lei, X. and Zhai, Y. (2012) Electrospun Nanofiber Membranes Containing Molecularly Imprinted Polymer (MIP) for Rhodamine B (RhB). Advances in Chemical Engineering and Science, 2, 266-274. doi: 10.4236/aces.2012.22031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Ye and K. Mosbach, “Molecular Imprinting: Synthetic Materials as Substitutes for Biological Antibodies and Receptors,” Chemical Materials, Vol. 20, No. 3, 2008, pp. 859-868. doi:10.1021/cm703190w
[2] C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O’Mahony and M. J. Whitcombe, “Molecular Imprinting Science and Technology: A Survey of the Literature for the Years Up to and Including 2003,” Journal of Molecular Recognition, Vol. 19, No. 2, 2006, pp. 106-180. doi:10.1002/jmr.760
[3] J. Fan, Y. Wei, J. Wang, C. Wu and H. Shi, “Study of Molecularly Imprinted Solid-Phase Extraction of Diphenylguanidine and Its Structural Analogs,” Analytica Chimica Acta, Vol. 639, No. 1-2, 2009, pp. 42-50. doi:10.1016/j.aca.2009.02.045
[4] H. Yan, K. H. Row and G. Yang, “Water-Compatible Molecularly Imprinted Polymers for Selective Extraction of Ciprofloxacin from Human Urine,” Talanta, Vol. 75, No. 1, 2008, pp. 227-232. doi:10.1016/j.talanta.2007.11.002
[5] Y. Li, X. Li, J. Chu, C. Dong, J. Qi and Y. Yuan, “Synthesis of Core-Shell Magnetic Molecular Imprinted Polymer by the Surface RAFT Polymerization for the Fast and Selective Removal of Endocrine Disrupting Chemicals from Aqueous Solutions,” Environmental Pollution, Vol. 158, No. 7, 2010, pp. 2317-2323. doi:10.1016/j.envpol.2010.02.007
[6] Y. Ji, J. Yin, Z. Xu, C. Zhao, H. Huang, H. Zhang and C. Wang, “Preparation of Magnetic Molecularly Imprinted Polymer for Rapid Determination of Bisphenol A in Environmental Water and Milk Samples,” Analytical and Bioanalytical Chemistry, Vol. 395, No. 4, 2009, pp. 1125-1133. doi.10.1007/s00216-009-3020-5
[7] W. Guo, W. Hua, J. Pan, H. Zhou, W. Guan, X. Wang, J. Dai and L. Xu, “Selective Adsorption and Separation of BPA from Aqueous Solution Using Novel Molecularly Imprinted Polymers Based on Kaolinite/Fe3O4 Composites,” Chemical Engineering Journal, Vol. 171, No. 2, 2011, pp. 603-611. doi:10.1016/j.cej.2011.04.036
[8] H. Zhu, L. Ma, G. Fang, M. Pan, J. Lu, X. Wang and S. Wang, “Preparation of a Molecularly Imprinted Polymer Using TMB as a Dummy Template and Its Application as SPE Sorbent for Determination of Six PBBs in Water and Fish Samples,” Anal Methods, Vol. 3, No. 2, 2011, pp. 393-399. doi: 10.1039/c0ay00479k
[9] D. Lakshmi, A. Bossi, M. J. Whitcombe, I. Chianella, S. A. Fowler, S. Subrahmanyam, E. V. Piletska and S. A. Piletsky, “Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element,” Analytical Chemistry, Vol. 81, No. 9, 2009, pp. 3576-3584. doi: 10.1021/ac802536p
[10] R. N. Liang, D. A. Song, R. M. Zhang and W. Qin, “Potentiometric Sensing of Neutral Species Based on a Uniform-Sized Molecularly Imprinted Polymer as a Receptor,” Angewandte Chemie International Edition, Vol. 49, No. 14, 2010, pp. 2556-2559. doi: 10.1002/anie.200906720
[11] X. Hu, Q. An, G. Li, S. Tao and J. Liu, “Imprinted Photonic Polymers for Chiral Recognition,” Angewandte Chemie International Edition, Vol. 45, No. 48, 2006, pp. 8145-8148. doi:10.1002/anie.200601849
[12] A. L. Medina-Castillo, G. Mistlberger, J. F. FernandezSanchez, A. Segura-Carretero, I. Klimant and A. Fernandez-Gutierrez, “Novel Strategy to Design Magnetic, Molecular Imprinted Polymers with Well-Controlled Structure for the Application in Optical Sensors”. Macromolecules, Vol. 43, No. 1, 2010, pp. 55-61. doi:10.1021/ma902095s
[13] L. Li, X. He, L. Chen and Y. Zhang, “Preparation of Core-shell Magnetic Molecularly Imprinted Polymer Nanoparticles for Recognition of Bovine Hemoglobin,” Chemistry—An Asian Journal, Vol. 4, No. 2, 2009, pp. 286-293. doi:10.1002/asia.200800300
[14] T. Jing, H. Du, Q. Dai, H. Xia, J. Niu, Q. Hao, S. Mei and Y. Zhou, “Magnetic Molecularly Imprinted Nanoparticles for Recognition of Lysozyme,” Biosensors and Bioelectronics, Vol. 26, No. 2, 2011, pp. 301-306. doi:10.1016/j.bios.2010.08.044
[15] L. Chen, S. Xu and J. Li, “Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications,” Chemical Society Reviews, Vol. 40, No. 5, 2011, pp. 2922-2942. doi:10.1039/c0cs00084a
[16] L. Chen, X. Zhang, L. Sun, Y. Xu, Q. Zeng, H. Wang, H. Xu, A. Yu, H. Zhang and L. Ding, “Fast and Selective Extraction of Sulfonamides from Honey Based on Magnetic Molecularly Imprinted Polymer,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 21, 2009, pp. 10073-10080. doi:10.1021/jf902257d
[17] D. Li and Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?” Advanced Materials, Vol. 16, No. 14, 2004, pp. 1151-1170. doi:10.1002/adma.200400719
[18] A. Greiner and J. H. Wendorff, “Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers,” Angewandte Chemie International Edition, Vol. 46, No. 30, 2007, pp. 5670-5703. doi:10.1002/anie.200604646
[19] S. Agarwal, A. Greiner and J. H. Wendorff, “Electrospinning of Manmade and Biopolymer Nanofibers— Progress in Techniques, Materials, and Applications,” Advanced Functional Materials, Vol. 19, No. 18, 2009, pp. 2863-2879. doi:10.1002/adfm.200900591
[20] X. Lu, C. Wang and Y. Wei, “One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications,” Small, Vol. 5, No. 21, 2009, pp. 2349-2370. doi:10.1002/smll.200900445
[21] M. R. Abidian, D. H. Kim and D. C. Martin, “Conducting-Polymer Nanotubes for Controlled Drug Release,” Advanced Materials, Vol. 18, No. 4, 2006, pp. 405-409. doi:10.1002/adma.200501726
[22] J. M. Dang and K. W. Leong, “Myogenic Induction of Aligned Mesenchymal Stem Cell Sheets by Culture on Thermally Responsive Electrospun Nanofibers,” Advanced Materials, Vol. 19, No. 19, 2007, pp. 2775-2779. doi:10.1002/adma.200602159
[23] K. Yoshimatsu, L. Ye, J. Lindberg and I. S. Chronakis, “Selective Molecular Adsorption Using Electrospun Nanofiber Affinity Membranes,” Biosensors and Bioelectronics, Vol. 23, No. 7, 2008, pp. 1208-1215. doi:10.1016/j.bios.2007.12.002
[24] I. S. Chronakis, A. Jakob, B. Hagstrom and L. Ye, “Encapsulation and Selective Recognition of Molecularly Imprinted Theophylline and 17β-Estradiol Nanoparticles within Electrospun Polymer Nanofibers,” Langmuir, Vol. 22, No. 21, 2006, pp. 8960-8965. doi:10.1021/la0613880
[25] S. Piperno, B. T. Bui, K. Haupt and L. A. Gheber, “Immobilization of Molecularly Imprinted Polymer Nanoparticles in Electrospun Poly(vinyl alcohol) Nanofibers,” Langmuir, Vol. 27, No. 5, 2011, pp. 1547-1550. doi:10.1021/la1041234
[26] I. S. Chronakis, B. Milosevic, A. Frenot and L. Ye, “Generation of Molecular Recognition Sites in Electrospun Polymer Nanofibers via Molecular Imprinting,” Macromolecules, Vol. 39, No. 1, 2006, pp. 357-361. doi: 10.1021/ma052091w
[27] M. S. Chen, H. F. Fan and K. C. Lin, “Kinetic and Thermodynamic Investigation of Rhodamine B Adsorption at Solid/Solvent Interfaces by Use of Evanescent-Wave Cavity Ring-Down Spectroscopy,” Analytical Chemistry, Vol. 82, No. 3, 2010, pp. 868-877. doi: 10.1021/ac9020209
[28] Y. Ma, X. Jin, M. Zhou, Z. Zhang, X. Teng and H. Chen, “Chemiluminescence Behavior Based on Oxidation Reaction of Rhodamine B with Cerium(IV) in Sulfuric Acid Medium,” Analytica Chimica Acta, Vol. 489, No. 2, 2003, pp. 173-181. doi:10.1016/S0003-2670(03)00756-6
[29] J. X. Yua, B. H. Li, X. M. Sun, J, Yuan and R. Chia, “Polymer Modified Biomass of Bakers Yeast For Enhancement Adsorption of Methylene Blue, Rhodamine B and Basic Magenta,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1147-1154. doi:10.1016/j.jhazmat.2009.02.144
[30] M. F. Hou, C. X. Ma, W. D. Zhang, X. Y. Tang, Y. N. Fan and H. F. Wan, “Removal of Rhodamine B Using Iron-Pillared Bentonite, Journal of Hazardous Materials, Vol. 186, No. 2-3, 2011, pp. 1118-1123. doi:10.1016/j.jhazmat.2010.11.110
[31] H.M.H. Gad and A. A. El-Sayed, “Activated Carbon from Agricultural By-Products for the Removal of Rhodamine-B from Aqueous Solution,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1070-1081. doi:10.1016/j.jhazmat.2009.02.155
[32] H. F. Men, H. Q. Liu, Z. L Zhang, J. Huang, J. Zhang, Y. Y. Zhai and L. Li, “Synthesis, Properties and Application Research of Atrazine Fe3O4@SiO2 Magnetic Molecularly Imprinted Polymer,” Environmental Science and Pollution Research, 2012, in Press. doi:10.1007/s11356-011-0732-9

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.