Minimum Rank of Graphs Powers Family

DOI: 10.4236/ojdm.2012.22012   PDF   HTML     3,916 Downloads   7,583 Views   Citations

Abstract

In this paper we study the relationship between minimum rank of graph G and the minimum rank of graph for some families of special graph G, where is the jth power of graph G.

Share and Cite:

A. Nazari and M. Radpoor, "Minimum Rank of Graphs Powers Family," Open Journal of Discrete Mathematics, Vol. 2 No. 2, 2012, pp. 65-69. doi: 10.4236/ojdm.2012.22012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] AIM Minimum Rank-Special Graphs Work Group, “Zero Forcing Sets and the Minimum Rank of Graphs,” Linear Algebra and Its Applications, Vol. 428, No. 7, 2008, pp. 1628-1648. doi:10.1016/j.laa.2007.10.009
[2] S. Fallat and L. Hogben, “The Minimum Rank of Symmetric Matrices Described by a Graph: A Survey,” Linear Algebra and Its Applications, Vol. 426, No. 2-3, 2007, pp. 558-582. doi:10.1016/j.laa.2007.05.036
[3] L. Hogben, “Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph,” Chamchuri Journal of Mathematics, Vol. 1, No. 1, 2009, pp. 51-72.
[4] F. Barioli, W. Barrett, S. M. Fallat, H. Tracy Hall, L. Hogben, B. Shader, P. van den Dries Che and Hein van der Holst, “Zero Forcing Parameters and Minimum Rank Problems,” Linear Algebra and Its Applications, Vol. 433, No. 2, 2010, pp. 401-411. doi:10.1016/j.laa.2010.03.008
[5] L. DeLoss, J. Grout, L. Hogben, T. McKay, J. Smith and G. Tims, “Techniques for Determining the Minimum Rank of a Small Graph,” Linear Algebra and Its Applications, Vol. 432, No. 11, 2010, pp. 2995-3001. doi:10.1016/j.laa.2010.01.008
[6] F. Barioli, S. M. Fallat and L. Hogben, “A Variant on the Graph Parameters of Colin de Verdi`ere: Implications to the Minimum Rank of Graphs,” Electronic Journal of Linear Algebra, Vol. 13, 2005, pp. 387-404.
[7] L. Hogben and H. van der Holst, “Forbidden Minors for the Class of Graphs G with ,” Linear Algebra Applications, Vol. 423, No. 1, 2007, pp. 42-52. doi:10.1016/j.laa.2006.08.003
[8] A. Berman, S. Friedland, L. Hogben, U. G. Rothblum and B. Shader, “An Upper Bound for the Minimum Rank of a Graph,” Linear Algebra and Its Applications, Vol. 429, No. 7, 2008, pp. 1629-1638. doi:10.1016/j.laa.2008.04.038
[9] L. DeLoss, J. Grout, L. Hogben, T. McKay, J. Smith and G. Tims, “Table of Minimum Ranks of Graphs of Order at Most 7 and Selected Optimal Matrices,” http://arxiv.org/abs/0812.0870
[10] American Institute of Mathematics Workshop, “Spectra of Families of Matrices Described by Graphs, Digraphs, and Sign Patterns,” 23-27 October 2006, Palo Alto.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.