A Review of Termo- and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 1: Drop Scavenging

DOI: 10.4236/acs.2012.22016   PDF   HTML   XML   5,214 Downloads   9,421 Views   Citations

Abstract

The role of phoretic forces in providing in-cloud and below-cloud scavenging due to falling drop is reviewed by considering published papers dealing with theoretical models, laboratory and field measurements. Theoretical analyses agree that Brownian diffusion appears to dominate drop scavenging of aerosol with radius less than 0.1 μm, and inertial impaction dominates scavenging of aerosol with radius higher than 1 μm. Thus, there is a minimum collection efficiency for particles in the approximate range 0.1 μm - 1 μm, where phoretic forces are felt. Generally speaking, published papers report not uniform evaluations of the contribution of thermo- and diffusiophoretic forces. This disagreement is partially due to the different laboratory and field conditions, and different theoretical approaches.

Share and Cite:

G. Santachiara, F. Prodi and F. Belosi, "A Review of Termo- and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 1: Drop Scavenging," Atmospheric and Climate Sciences, Vol. 2 No. 2, 2012, pp. 148-158. doi: 10.4236/acs.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. R. Pruppacher and J. D. Klett, “Microphysics of Clouds and Precipitation,” Kluver Academic Publishers, Dordrecht, 1997.
[2] J. H. Seinfeld and S. N. Pandis, “Atmospheric Chemistry and Physics,” John Wiley & Sons, Inc. New York, 1998.
[3] J. Stefan, “über die Verdampfung aus Einem Kreisf?rming oder Elliptisch Begrenzten Becken,” Wien. Ber. Vol. 83, 1881, pp. 943-949.
[4] L. Waldmann and K. H. Schmitt, “Thermophoresis and Diffusiophoresis of Aerosol,” Aerosol Science, Academic Press, London, 1966, pp.163-194.
[5] K. Sellegri, P. Laj, R. Dupuy, M. Legrand, S. Preunkert and J.-P. Putaud, “Size-Dependent Scavenging Efficiencies of Multicomponent Atmospheric Aerosols in Clouds,” Journal of Geophysical Research, Vol. 108, No. D11, 2003, p. 4344. doi:10.1029/2002JD002749
[6] L. Zhang, D. V. Michelangeli and P. A. Taylor, “Numerical Studies of Aerosol Scavenging by Low-Level, Warm Stratiform Clouds and Precipitation,” Atmospheric Environment, Vol. 38, No. 28, 2004, pp. 4653-4665. doi:10.1016/j.atmosenv.2004.05.042
[7] B. B. Hicks, “Nucleation and the Wet Removal of Fallout,” Journal of Applied Meteorology, Vol. 5, No. 2, 1966, pp.169-174. doi:10.1175/1520-0450(1966)005<0169:NATWRO>2.0.CO;2
[8] W. E. Davis, “A Model for In-Cloud Scavenging of Cosmogenic Radionuclides,” Journal of Geophysical Research, Vol. 77, No. 12, 1972, pp. 2159-2165. doi:10.1029/JC077i012p02159
[9] A. N. Dingle and Y. Lee, “An Analysis of In-Cloud Scavenging,” Journal of the Atmospheric Sciences, Vol. 12, 1973, pp. 1295-1302.
[10] B. Croft, U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, C. Hoose, U. Heikkil?, A. van Donkelaar and S. Ferrachat, “Influence of In-Cloud Aerosol Scavenging Parameterization on Aerosol Concentrations and Wet Deposition in ECHAMS5-HAM,” Atmospheric Chemistry and Physics, Vol. 10, No. 4, 2010, pp. 1511-1543. doi:10.5194/acp-10-1511-2010
[11] L. M. Hockinga and P. R. Jonas, “The Collision Efficiency of Small Drops,” Quarterly Journal of the Royal Metero- logical Society, Vol. 96, No. 410, 1970, pp.722-729. doi:10.1002/qj.49709641013
[12] W. K. Crandall, C. R. Molenkamp, A. L. Williams, M. M. Fulk, R. Lange and J. B. Knox, “An Investigation of Scavenging of Radioactivity from Nuclear Debris Clouds: Research in Progress,” Lawrence Livermore Laboratory, Livermore, 1973.
[13] K. V. Beard and S. N. Grover, “Numerical Collision Efficiencies for Small Raindrops Colliding with Micron Size Particles,” Journal of the Atmospheric Sciences, Vol. 31, No. 2, 1974, pp. 543-550. doi:10.1175/1520-0469(1974)031<0543:NCEFSR>2.0.CO;2
[14] W. G. N. Slinn, “Precipitation Scavenging,” In: D. Rader- son, Ed., Atmospheric Sciences and Power Production, chapter 11, Division of Biomedical Environmental Research, U.S. Department of Energy, Washington DC, 1983.
[15] P. J. G. Nieto, B. A. García, J. M. Fernandez Diaz and M. A. R. Bra?a, “Parametric Study of Selective Removal of Atmospheric Aerosol by Below-Cloud Scavenging,” Atmospheric Environment, Vol. 28, No. 14, 1994, pp. 2335- 2342.
[16] M. Mircea, S. Stefan and S. Fuzzi, “Precipitation Scavenging Coefficient: Influence of Measured Aerosol and Raindrop Size Distributions,” Atmospheric Environment, Vol. 34, No. 29-30, 2000, pp. 5169-5174. doi:10.1016/S1352-2310(00)00199-0
[17] A. Baklanov and J. H. Sorensen, “Parameterisation of Radionuclide Deposition in Atmospheric Long-Range Transport Modelling,” Physics and Chemistry of the Earth (B), Vol. 26, No. 10, 2001, pp.787-799. doi:10.1016/S1464-1909(01)00087-9
[18] D. M. Chate, P. S. P. Rao, M. S. Naik, G. A. Momin, P. D. Safai and K. Ali, “Scavenging of Aerosols and Their Chemical Species by Rain,” Atmospheric Environment, Vol. 37, No. 18, 2003, pp. 2477-2484. doi:10.1016/S1352-2310(03)00162-6
[19] C. Andronache, “Estimated Variability of Below-Cloud Aerosol Removal by Rainfall for Observed Aerosol Size Distribution,” Atmospheric Chemistry and Physics, Vol. 3, No. 1, 2003, pp. 131-143. doi:10.5194/acp-3-131-2003
[20] J. S. Henzing, D. J. L. Olivié and P. F. J. van Velthoven, “A Parameterization of Size Resolved Below Cloud Scavenging of Aerosols by Rain,” Atmospheric Chemistry and Physics, Vol. 6, No. 11, 2006, pp. 3363-3375. doi:10.5194/acp-6-3363-2006
[21] G. A. Loosmore and R. T. Cederwall, “Precipitation Scavenging of Atmospheric Aerosols for Emergency Response Applications: Testing an Updated Model Wit New Real-Time Data,” Atmospheric Environment, Vol. 38, No. 7, 2004, pp. 993-1003. doi:10.1016/j.atmosenv.2003.10.055
[22] S. H. Park, C. H. Jung, K. R. Jung, B. K. Lee and K. W. Lee, “Wet Scrubbing of Polydisperse Aerosols by Freely Falling Droplets,” Journal of Aerosol Science, Vol. 36, No. 12, 2005, pp. 1444-1458. doi:10.1016/j.jaerosci.2005.03.012
[23] J. Feng, “A 3-Mode Parameterization of Below-Cloud Scavenging of Aerosols for Use in Atmospheric Dispersion Models,” Atmospheric Environment, Vol. 41, No. 32, 2007, pp. 6808-6822. doi:10.1016/j.atmosenv.2007.04.046
[24] S. M. Calderón, N. D. Poor, S. W. Campbell, P. Tate and B. Hartsell, “Rainfall Scavenging Coefficients for Atmospheric Nitric Acid and Nitrate in a Subtropical Coastal Environment,” Atmospheric Environment, Vol. 42, No. 33, 2008, pp. 7757-7767. doi:10.1016/j.atmosenv.2008.05.040
[25] S. Berthet, M. Leriche, J. P. Pinty, J. Cuesta and G. Pigeon, “Scavenging of Aerosol Particles by Rain in a Cloud Resolving Model,” Atmospheric Research, Vol. 96, No. 2-3, 2010, pp. 325-336. doi:10.1016/j.atmosres.2009.09.015
[26] K. C. Young, “The Role of Contact Nucleation in Ice Phase Initiation in Clouds,” Journal of the Atmospheric Sciences, Vol. 31, No. 3, 1974, pp. 768-776. doi:10.1175/1520-0469(1974)031<0768:TROCNI>2.0.CO;2
[27] M. J. Pilat and A. Prem, “Calculated Particle Collection Efficiencies of Single Droplets Including Inertial Impaction, Brownian Diffusion, Diffusiophoresis and Thermophoresis,” Atmospheric Environment, Vol. 10, 1976, pp. 13-19. doi:10.1016/0004-6981(76)90253-5
[28] M. J. Pilat and A. Prem, “Effect of Diffusiophoresis and Thermophoresis on the Overall Particle Collection Efficiency of Spray Droplet Scrubbers,” Journal Air Pollution Control Association, Vol. 27, No. 10, 1977, pp. 982-988. doi:10.1080/00022470.1977.10470521
[29] S. N. Grover, H. R. Pruppacher and A. E. Hamielec, “A Numerical Determination of the Efficiency with Which Spherical Aerosol Particles Collide with Spherical Water Drops Due to Inertial Impaction and Phoretic and Electrical Forces,” Journal of the Atmospheric Sciences, Vol. 34, No. 10, 1977, pp.1655-1663.
[30] P. K. Wang, S. N. Grover and H. R. Pruppacher, “On the Effect of Electric Charges on The Scavenging of Aerosol Particles by Clouds and Small Raindrops,” Journal of the Atmospheric Sciences, Vol. 35, No. 9, 1978, pp. 1735-1743. doi:10.1175/1520-0469(1978)035<1735:OTEOEC>2.0.CO;2
[31] J. C. Carstens and J. J. Martin, “In-cloud Scavenging by Thermophoresis, Diffusiophoresis, and Brownian Diffusion,” Journal of the Atmospheric Sciences, Vol. 39, No. 5, 1982, pp. 1124-1129.
[32] C. Andronache, T. Gr?nholm, L. Laakso, V. Phillips and A. Ven?l?inen, “Scavenging of Ultrafine Particles by Rainfall at a Boreal Site: Observations and Model Estimations,” Atmospheric Chemistry and Physics, Vol. 6, No. 12, 2006, pp. 4739-4754.
[33] S. Y. Bae, C. H. Jung and Y. P. Kim, “Relative Contributions of Individual Phoretic Effect in The Below-Cloud Scavenging Process,” Journal of Aerosol Science, Vol. 40, No. 7, 2009, pp. 621-632. doi:10.1016/j.jaerosci.2009.03.003
[34] B. Croft, U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, R. Posselt and S. Ferrachat, “Aerosol size-Dependent Below-Cloud Scavenging by Rain and Snow in the ECHAMS5-HAM,” Atmospheric Chemistry and Physics, Vol. 9, No. 14, 2009, pp. 4653-4675. doi:10.5194/acp-9-4653-2009
[35] W. G. N. Slinn and J. M. Hales, “A Reevaluation of the Role of Thermophoresis as a Mechanism of In- and Below-Cloud Scavenging,” Journal of the Atmospheric Sci- ences, Vol. 28, No. 8, 1971, pp. 1465-1471. doi:10.1175/1520-0469(1971)028<1465:AROTRO>2.0.CO;2
[36] H. G. Horn, H. Bonka, E. Gerhards, B. Hieronimus, M. Kalinowski, L. Kranz and M. Maqua, “Collection Efficiency of Aerosol Particles by Raindrops,” Journal of Aerosol Science, Vol. 19, No. 7, 1988, pp. 855-858. doi:10.1016/0021-8502(88)90051-1
[37] H. T. Kim, C. H. Jung, S. N. Oh and K. W. Lee, “Particle Removal Efficiency of Gravitational Wet Scrubber Considering Diffusion, Interception, and Impaction,” Environmental Engineering Science, Vol. 18, No. 2, 2001, pp. 125-136. doi:10.1089/10928750151132357
[38] H. Tost, P. J?ckel, A. Kerkweg, R. Sander and J. Lelieveld, “Technical Note: A New Comprehensive Scavenging Submodel for Global Atmospheric Chemistry Modelling,” Atmospheric Chemistry and Physics, Vol. 6, No. 3, 2006, pp. 565-574.
[39] S. M. Greenfield, “Rain Scavenging of Radioactive Particulate Matter from the Atmosphere,” Journal of Meteorology, Vol. 14, No. 2, 1957, pp. 115-125. doi:10.1175/1520-0469(1957)014<0115:RSORPM>2.0.CO;2
[40] B. V. Derjaguin and Yu. Yalamov, “Theory of Thermophoresis of Large Aerosol Particles,” Journal of Colloid Science,” Vol. 20, No. 6, 1966, pp. 555-570. doi:10.1016/0095-8522(65)90035-8
[41] L. Talbot, R. K. Cheng, R. W. Schefer and D. R. Willis, “Thermophoresis of Particles in a Heated Boundary Lay- er,” Journal of Fluid Mechanics, Vol. 101, No. 4, 1980, pp. 737- 758. doi:10.1017/S0022112080001905
[42] K. Yamamoto and Y. Ishihara, “Thermophoresis of a Sphe- rical Particle in a Rarefied Gas of a Transition Regime,” Physics of Fluids, Vol. 31, No. 12, 1988, pp. 3618-3624. doi:10.1063/1.866878
[43] F. Prodi, G. Santachiara, S. Travaini, A. Vedernikov, F. Dubois and J. C. Legros, “Measurements of Phoretic Velocities of Aerosol Particles in Micrograviy Conditions,” Atmospheric Research, Vol. 82, No. 1, 2006, pp. 183-189.
[44] L. Waldmann, “über die Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln,” Zeitschrift fuer Natur- forschung, Vol. 14a, No. 7, 1959, pp. 589-599.
[45] K. H. Schmitt and L. Waldmann, “Untersuchungen an Schwebstoffteilchen in Diffundierenden Gasen,” Zeits- chrift Fuer Naturforschgung, Vol. 15a, No. 10, 1960, pp. 843-851.
[46] P. Goldsmith, H. J. Delafieldm and L. C. Cox, “The Role of Diffusiophoresis in the Scavenging of Radioactive Particles from the Atmosphere,” Quarterly Journal of the Royal Meterological Society, Vol. 89, 1963, pp. 43-61. doi:10.1002/qj.49708937903
[47] W. G. N. Slinn and J. M. Hales, “Phoretics Effects in Scavenging,” Precipitation Scavenging, AEC Symposium Series 22, Washington DC, 1970.
[48] B. T. McGann and S. G. Je nnings, “The Efficiency with Which Drizzle and Precipitation Sized Drops Collide with Aerosol Particles,” Atmospheric Environment, Vol. 25, No. 3-4, 1991, pp. 791-799.
[49] R. J. Cotton and P. R. Field, “Ice Nucleation Characteristics of an Isolated Wave Cloud,” Quarterly Journal of the Royal Meteorological Society, Vol. 128, 2002, pp. 2417-2437. doi:10.1256/qj.01.150
[50] C. Hoose, U. Lohmann, R. Bennartz, B. Croft and G. Lesins, “Global Simulations of Aerosol Processing in Clouds,” Atmospheric Chemistry and Physics, Vol. 8, No. 23, 2008, pp. 6939-6963. doi:10.5194/acp-8-6939-2008
[51] H. M. Davenport and L. K. Peters, “Field Studies of Atmospheric Particulate Concentration Changes during Precipitation,” Atmospheric Environment, Vol. 12, No. 5, 1978, pp. 997-1008. doi:10.1016/0004-6981(78)90344-X
[52] D. M. Chate, “Study of Scavenging of Submicron-Sized Aerosol Particles by Thunderstorm Rain Events,” Atmospheric Environment, Vol. 39, No. 35, 2005, pp. 6608-6619. doi:10.1016/j.atmosenv.2005.07.063
[53] L. Laakso, T. Gr?nholm, U. Rannik, M. Kosmale, V. Fiedler, H. Vehkam?ki and M. Kulmala, “Ultrafine Particle Scavenging Coefficients Calculated from 6 Years Field Measurements,” Atmospheric Environment, Vol. 37, No. 25, 2003, pp. 3605-3613. doi:10.1016/S1352-2310(03)00326-1
[54] J. S. Marshall and W. M. Palmer, “The Distribution of Raindrop with Size,” Journal of Meteorology, Vol. 5, 1948, pp. 165-166. doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
[55] P. Goldsmith and F. G. May, “Diffusiophoresis and Thermophoresis in Water Vapour Systems,” Aerosol Science, Academic Press, London, 1966, pp.163-194.
[56] L. E. Sparks and M. J. Pilat, “Effect of Diffusiophoresis on Particle Collection by Wet Scrubbers,” Atmospheric Environment, Vol. 4, No. 6, 1970, pp. 651-660. doi:10.1016/0004-6981(70)90038-7
[57] T. W. Horst, “A Review of Particle Transport in a Condensing Steam Environment,” Pacific Northwest Laboratory, Richland, 1968.
[58] S. Viswanathan, “Numerical Study of Particle Collection by Single Water Droplets,” Industrial and Engineering Chemistry Research, Vol. 38, No. 11, 1999, pp. 4433-4442. doi:10.1021/ie990199s
[59] T. V. Vasudevan, A. J. Gokhale and R. Mahalingam, “Phoretic Phenomena in Tar Vapor-Particulate Mixture Separation from Fuel Gas Streams,” The Canadian Journal of Chemical Engineering, Vol. 63, No. 6, 1985, pp. 903-910. doi:10.1002/cjce.5450630606
[60] L. Facy, “Mechanisms of Capture of Aerosol Particles in the Process of Condensation-Evaporation,” Comptes Rendus de l’Académie des Sciences, Vol. 246, No. 102, 1958, pp. 3161-3164.
[61] P. V. Hobbs and A. L. Rangno, “Ice Particle Concentrations in Clouds,” Journal of the Atmospheric Sciences, Vol. 42, 1985, No. 23, pp. 2523-2549. doi:10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2
[62] K. V. Beard, “Ice Initiation in Warm-Base Convective Clouds: An Assessment of Microphysical Mechanisms,” Atmospheric Research, Vol. 28, No. 2, 1992, pp. 125-152. doi:10.1016/0169-8095(92)90024-5
[63] A. L. Rangno and P. V. Hobbs, “Ice Particle Concentrations and Precipitation Development in Small Continental Cumuliform Clouds,” Quarterly Journal of the Royal Meterological Society, Vol.120, 1994, pp. 573-601. doi:10.1002/qj.49712051705
[64] W. A. Cooper, “Ice Formation in Wave Clouds: Observed Enhancement During Evaporation,” In: American Meteorological Society, Ed., Preprint of Proceedings of AMS Conference on Cloud Physics, Dallas, Texas American Meteorological Society, Boston, 1995, pp. 147-152.
[65] P. R. Field, R. J. Cotton, K. Noone, P. Glantz, P. H. Haye, E. Hirst, R. S. Greeaway, C. Jost, R. Gabriel, T. Reiner, M. Andreae, C. P. R. Saunders, A. Archer, T. Choularton, M. Smith, B. Brooks, C. Hoell, B. Bandy, D. Johnson and A. Heymsfield, “Ice Nucleation in Orographic Wave Clouds: Measurements Made during INTACC,” Quarterly Journal of the Royal Meterological Society, Vol. 27, 2001, pp. 1493-1512. doi:10.1002/qj.49712757502
[66] A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach and D. Althausen, “Ice Formation in Saharan Dust over Central Europe Observed with Temperature/Humidity Aerosol Raman Lidar,” Journal of Geophysical Research, Vol. 110, 2005, 12 p. doi:10.1029/2004JD005000
[67] B. A. Baker and R. P. Lawson, “In Situ Observations of the Microphysical Properties of Wave, Cirrus and Anvil Clouds. Part I: Wave Clouds,” Journal of the Atmospheric Sciences, Vol. 63, No. 12, 2006, pp. 3160-3185. doi:10.1175/JAS3802.1
[68] W. A. Cooper and G. Vali, “The Origin of Ice in Mountain Cap Clouds,” Journal of the Atmospheric Sciences, Vol. 38, No. 6, 1981, pp. 1244-1259. doi:10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2
[69] A. J. Duranta and R. A. Shaw, “Evaporation Freezing by Contact Nucleation Inside-Out,” Geophysical Research Letters, Vol. 32, 2005, 4 p. doi:10.1029/2005GL024175
[70] L. Ladino, O. Stetzer, B. Hattendorf, D. Günther, B. Croft and U. Lohmann, “Experimental Study of Collection Efficiencies between Submicron Aerosols and Cloud Droplets,” Journal of the Atmospheric Sciences, Vol. 68, No. 9, 2011, pp. 1853-1864. doi:10.1175/JAS-D-11-012.1
[71] K. Y. Lai, N. Dayan and M. Kerker, “Scavenging of Aerosol Particles by a Falling Water Drops,” Journal of the Atmospheric Sciences, Vol. 35, No. 4, 1978, pp. 674-682. doi:10.1175/1520-0469(1978)035<0674:SOAPBA>2.0.CO;2
[72] V. Hampl, M. Kerker, D. D. Cooke and E. Matijevic, “Scavenging of Aerosol Particles by a Falling Water Droplet,” Journal of the Atmospheric Sciences, Vol. 28, No. 7, 1971, pp. 1211-1221. doi:10.1175/1520-0469(1971)028<1211:SOAPBA>2.0.CO;2
[73] K. V. Beard, “Experimental and Numerical Collision Efficiencies for Submicron Particles Scavenged by Small Raindrops,” Journal of the Atmospheric Sciences, Vol. 31, No. 6, 1974, pp. 1595-1603. doi:10.1175/1520-0469(1974)031<1595:EANCEF>2.0.CO;2
[74] T. S. Pranesha and A. K. Kamra, “Scavenging of Aerosol Particles by Large Water Drops 1. Neutral case,” Journal of Geophysical Research, Vol. 101, No. D18, 1996, pp. 23373- 23380. doi:10.1029/96JD01311
[75] P. Ebert, M. Kibler, A. Mainka, B. Tenberken, K. Baechmann, G. Frank and J. Tschiersch, “A field Study of Particle Scavenging by Raindrops of Different Sizes Using Monodisperse Trace Aerosol,” Journal of Aerosol Science, Vol. 29, No. 1-2, 1998, pp. 173-186. doi:10.1016/S0021-8502(97)00043-8
[76] P. K. Wang and H. K. Pruppacher, “An Experimental Determination of the Efficiency with Which Aerosol Particles Are Collected by Water Drops in Subsaturated Air,” Journal of the Atmospheric Sciences, Vol. 34, No. 10, 1977, pp. 1664-1669. doi:10.1175/1520-0469(1977)034<1664:AEDOTE>2.0.CO;2
[77] K. H. Leong, K. V. Beard and H. T. Ochs, “Laboratory Measurements of Particle Capture by Evaporating Cloud Drops,” Journal of the Atmospheric Sciences, Vol. 39, No. 5, 1982, pp. 1130-1140.
[78] H. C. Wang, K. H. Leong, J. J. Stukel and P. K. Hopke, “The Effect of Thermophoresis and Diffusiophoresis on the Collection of Charged Sub-?M Particles by Charged Droplets,” Atmospheric Environment, Vol. 17, No. 12, 1983, pp. 2533- 2537. doi:10.1016/0004-6981(83)90079-3
[79] X. Wang, L. Zhang and M. D. Moran, “Uncertainty Assessment of Current Size-Resolved Parameterizations for Below-Cloud Particle Scavenging by Rain,” Atmospheric Chemistry and Physics, Vol. 10, No. 12, 2010, pp. 5685- 5705. doi:10.5194/acp-10-5685-2010
[80] X. Wang, L. Zhang and M. D. Moran, “On the Discrepancies between Theoretical and Measured Below-Cloud Particle Scavenging Coefficients for Rain—A Numerical Investigation Using a Detailed One-Dimensional Cloud Microphysics Model,” Atmospheric Chemistry and Physics, Vol. 11, No. 22, 2011, pp. 11859-11866. doi:10.5194/acp-11-11859-2011
[81] D. M. Chate, P. S. P. Rao, M. S. Naik, G. A. Momin, P. D. Safai and K. Ali, “Scavenging of Aerosols and Their Chemical Species by Rain,” Atmospheric Environment, Vol. 37, No. 18, 2003, pp. 2477-2484. doi:10.1016/S1352-2310(03)00162-6
[82] S. F. Maria and L. M. Russel, “Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation,” Environmental Science and Technology, Vol. 39, 2005, pp. 4793-4800. doi:10.1021/es0491679
[83] L. F. Radke, P. V. Hobbs and M. W. Eltworth, “Scavenging of Aerosol Particles by Precipitation,” Journal of Applied Meteorology, Vol. 19, No. 6, 1980, pp. 715-722. doi:10.1175/1520-0450(1980)019<0715:SOAPBP>2.0.CO;2
[84] M. T. Dana and J. M. Hales, “Statistical Aspects of the Washout of Polydisperse Aerosols,” Atmospheric Environment, Vol. 10, No. 1, 1976, pp. 45-50. doi:10.1016/0004-6981(76)90258-4
[85] T. Schumann, “Large Discrepancies between Theoretical and Field-Determined Scavenging Coefficients,” Journal of Aerosol Science, Vol. 20, No. 8, 1989, pp. 1159-1162. doi:10.1016/0021-8502(89)90786-6
[86] M. Volken and T. Schumann, “A Critical Review of Below-Cloud Aerosol Scavenging Results on Mt. Rigi,” Water, air and soil pollution, Vol. 68, No. 1-2, 1993, pp.15-28. doi:10.1007/BF00479390
[87] A. I. Flossmann, “A Theoretical Investigation of the Removal of Atmospheric Trace Constituents by Means of a Dynamic Model,” Ph.D. Thesis, Meteorological Institute, Johannes Gutenberg Universit?t, Mainz, 1987.
[88] D. M. Chate, T. S. Pranesha, “Field Studies of Scavenging of Aerosols by Rain Event,” Journal of Aerosol Science, Vol. 35, No. 6, 2004, pp. 695-706. doi:10.1016/j.jaerosci.2003.09.007

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.