Synthesis, characterization, spectroscopic and crystallographic investigation of Cobalt(III) schiff base complex with two perpendicular diamine coumarin ligands


New transition metal complex of Cobalt(III) of the ligand (E)-3-(1-(2-aminoethylimino)ethyl)-4-hydroxy-2H-chromen-2-one, derived from condensation of ethylene diamine with 3-acetyl-4-hydroxy-chromene-2-one have been synthesized by reaction of cobalt(III) salt and the ligand, in amounts equal to metal-ligand molar ratio of 1:2. Both the Schiff base and the complex of Co(III) were characterized by IR, UV-Vis, 1H NMR- and 13C NMR-spectroscopy techniques. Single crystal X-ray diffraction investigation, at low temperature T = 120 K, shows that the cobalt complex is triclinic P-1, a = 10.426(5) ?, b = 11.3234(2) ?, c = 15.729(5) ?, α(°) = 70.102(4), β(°) = 86.049(4), γ(°) = 82.497(4), Z = 2, and its structure consists of isolated [Co(III)(C13H13N2O3)2]+ complex cations with distorted octahedral geometry, ClO-4 counter anions, acetone solvent and water molecules. The crystal cohesion is stabilized by hydrogen bonds between ligands and water molecules, and ionic interactions between complex cations and counter anions.

Share and Cite:

Ketata, I. , Mechi, L. , Ayed, T. , Dusek, M. , Petricek, V. and Hassen, R. (2012) Synthesis, characterization, spectroscopic and crystallographic investigation of Cobalt(III) schiff base complex with two perpendicular diamine coumarin ligands. Open Journal of Inorganic Chemistry, 2, 33-39. doi: 10.4236/ojic.2012.22006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Galm, U., Heller, S., Shapiro, S., Page, M., Li, S. and Heide, L. (2004) Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Antimicrobial Agents and Chemotherapy, 48, 1307-1312. doi:10.1128/AAC.48.4.1307-1312.2004
[2] Tao, J., Hu, S., Pacholec, M. and Walsh, C.T (2003) Synthesis of proposed oxidation-cyclization-methylation intermidiates of the coumarin antibiotic biosynthetic pathway. Organic Letters, 5, 3233-3236. doi:10.1021/ol035101r
[3] O’Kennedy, R. and Thornes, R.D. (1997) Coumarins: Biology, applications and mode of action. John Wiley & Sons, New York.
[4] Hoult, J.R. and Paya, M. (1996) Pharmacological and biochemical actions of simple coumarins natural products with therapeutic potential. General Pharmacology, 27, 713-722. doi:10.1016/0306-3623(95)02112-4
[5] Kam, C.M., Kerrigan, J.E., Plaskon, R.R., Duffy, E.J., Lollar, P., Suddath, F.L. and Powers, J.C. (1994) Mechanism-based isocoumarin inhibitors for blood coagulation serine proteases. Effect of the 7-substituent in 7-amino-4-chloro-3-(isothioureidoalkoxy)isocoumarins on inhibitory and anticoagulant potency. Journal of Medicinal Chemistry, 37, 1298-1306.
[6] Lakin, K.M., Smirnova, T.V., Vishnyakova G.M., Lobanova E.G., Novikova, N.V. and Sklyarenko V.I. (1989) New water-soluble anticoagulants of the coumarin series. Pharmaceutical Chemistry Journal, 23, 824-826.
[7] Finn, G.J., Creaven, B. and Egan, D.A. (2001) Study of the in vitro cytotoxic potential of natural and synthetic coumarin derivatives using human normal and neoplastic skin cell lines. Melanoma Research, 11, 461-467. doi:10.1097/00008390-200110000-00004
[8] Kerr, J.S., Li, H.Y., Wexler, R.S., Robinson, A.J., Robinson, C.S., Boswell, G.A., Kranthanser, C. and Harlow, P.P. (1997) The characterization of potent novel warfarin analogs. Thrombosis Research, 88, 127-136. doi:10.1016/S0049-3848(97)00224-7
[9] Ammar, H.O., Ghorab, M., El Nahhal, S.A. and Makram, T.S. (1997) Interaction of oral anticoagulants with methyl xanthines. Pharmazie, 52, 946-950.
[10] Kostova, I. (2005) Antineoplastic activity of new lanthanide (cerium, lanthanum and neodymium) complex compounds. Current Medicinal Chemistry—Anti-Cancer Agents, 5, 29-46. doi:10.2174/1568011053352550
[11] Mandakmare, A.U. and Navwade, M.L. (1997) Stability constants of Fe(III), Cr(III), Al(III) chelates with some substituted coumarins. Oriental Journal of Chemistry, 13, 155-158.
[12] El-Ansary, A.L. and Omar, N.M.M. (1988) New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Egyptian Journal of Chemistry, 31, 511-520.
[13] Goswami, N. and Eichhorn, D.M. (2000) Incorporation of thiolate donation using 2,2’-dithiodibenzaldehyde: Synthesis of Ni, Fe, and Cu complexes. Crystal structures of [M(tsalen)] (tsalen = N,N’-ethylenebis(thiosalicylidene)-imine); M = Cu, Ni) showing a tetrahedral distortion of Cu(tsalen). Inorganica Chimica Acta, 303, 271-276. doi:10.1016/S0020-1693(00)00047-5
[14] Labisbal, E., Rodriguez, L., Sousa-Pedrares, A., Alonso, M., Vizoso, A., Romero, J., Garcia-Vazquez, J.A. and Sousa, A. (2006) Synthesis, characterisation and X-ray structures of diorganotin(IV) and iron(III) complexes of dianionic terdentate Schiff base ligands. Journal of Organometallic Chemistry, 691, 1321-1332. doi:10.1016/j.jorganchem.2005.09.052
[15] Tianzhi,Y., Wenming, S., Wenlian, L., Ziruo, H., Ruinian, H., Mingtao, L., Bei C., Bin, L., Zhiqiang, Z. and Zhi, H.Z. (2006) Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorganica Chimica Acta, 359, 2246-2251. doi:10.1016/j.ica.2006.01.019
[16] Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishina, H. and Kojima, M. (1998) European Journal of Inorganic Chemistry, 37, 142-147. doi:10.1021/ic9705958
[17] Canali, L. and Sherrington, D.C. (1999) Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chemical Society Reviews, 28, 85-93. doi:10.1039/a806483k
[18] Opstal, T. and Verpoort, F. (2003) Synthesis of highly active ruthenium indenylidene complexes for atom-transfer radical polymerization and ring-opening-metathesis polymerization. Angewandte Chemie International Edition, 42, 2876-2879. doi:10.1002/anie.200250840
[19] Clercq, B.D., Lefebvre, F. and Verpoort, F. (2003) Immobilization of multifunctional Schiff base containing ruthenium complexes on MCM-41. Applied Catalysis A, 247, 345-364. doi:10.1016/S0926-860X(03)00126-1
[20] Tumer, M., Koksal, H., Sener, M.K. and Serin, S. (1999) Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transition Metal Chemistry, 24, 414-420. doi:10.1023/A:1006973823926
[21] Desimoni, G., Faita, G. and Jorgensen, K.A. (2006) C(2)-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chemical Reviews, 106, 3561-3651. doi:10.1021/cr0505324
[22] Fache, F., Schulz, E., Tommasino, M.L. and Lemaire, M. (2000) Nitrogencontaining ligands for asymmetric homogeneous and heterogeneous catalysis. Chemical Reviews, 100, 2159-2232. doi:10.1021/cr9902897
[23] Thomas, J.M. and Raja, R.J. (2004) Catalytic significance of organometallic compounds immobilized on mesoporous silica: economically and environmentally important examples. Journal of Organometallic Chemistry, 689, 4110-4124. doi:10.1016/j.jorganchem.2004.07.052
[24] Jones, M.D. and Mahon, M.F. (2008) Synthesis of Rh(I) diamine complexes and their exploitation for asymmetric hydrogen transfer processes. Journal of Organometallic Chemistry, 693, 2377-2382. doi:10.1016/j.jorganchem.2008.04.020
[25] Dreos, R., Mechi, L., Randaccio, L., Siega, P., Zangrand, E. and Ben Hassen, R. (2006) Synthesis and X-ray crystal structure of a new μ-hydroxo dinuclear cobalt complex containing one cis-β folded and one planar salen moiety. Journal of Organometallic Chemistry, 691, 3305-3309. doi:10.1016/j.jorganchem.2006.04.006
[26] Dreos, R., Mechi, L., Nardin, G., Randaccio, L. and Siega, P. (2005) Alternative cocrystallization of ¨almost〃 enantiomers and true enantiomers in some cis-β-organocobalt salen-type complexes with α-amino acids. Journal of Organometallic Chemistry, 690, 3815-3821. doi:10.1016/j.jorganchem.2005.05.017
[27] Mechi, L., Chtiba, S., Hamdi, N. and Ben Hassen, R. (2009) 4-Hydr-oxy-3-[(2E)-3-(3,4,5-trimethoxy-phen-yl)-prop-2-eno-yl]-2H-chromen-2-one. Acta Crystallographica Section E, 65, 1652-1653. doi:10.1107/S1600536809022569
[28] Dholakia, V.N., Parekh., M.G. and Trivedi, K.N. (1968) Studies in 4-hydroxy coumarins. Australian Journal of Chemistry, 21, 2345-2347. doi:10.1071/CH9682345
[29] Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: An improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381-388. doi:10.1107/S002188980403225X
[30] Petricek, V., Dusek, M. and Palatinus L. (2006) Jana2006. Institute of Physics, Praha.
[31] Bellamy, L.J. (1975) The infrared spectra of complex molecules. 3rd Edition, Chapman and Hall, London.
[32] Bhattacharjee, S. and Anderson, J. (2006) Comparison of the epoxidation of cyclohexene, dicyclopentadiene and 1,5-cyclooctadiene over LDH hosted Fe and Mn sulfonato-salen complexes. Journal of Molecular Catalysis A, 249, 103-110. doi:10.1016/j.molcata.2005.12.042
[33] Zhang, Y., Zhao, J., He, L., Zhao, D. and Zhang, S. (2006) Manganese(III) salen complex anchored onto MCM-41 as catalyst for the aerobic epoxidation of olefins. Microporous and Mesoporous Materials, 94, 159-165. doi:10.1016/j.micromeso.2006.03.040
[34] Ertl, A., Huches, J.M., Pertlik, F., Foit, F., Wright, S.E., Brandstatter, F. and Marler, B. (2002) Polyhedrom distr- tions in tourmaline. The Canadian Mineralogist, 40, 153-163. doi:10.2113/gscanmin.40.1.153
[35] Baur, W.H. (1974) The geometry of polyhedral distortions predictive relationships for the phosphate group. Acta Crystallographica, 30, 1195-1215.
[36] Gupta, S.K., Hitchcock, P.B. and Kushwah, Y.S. (2002) The crystal structure of 4-methyl-2,6-dibenzoylphenol and its conversion into a mononuclear cobalt(III) complex by treatment with cobalt(II) chloride and propane-1,3-diamine. Polyhedron, 21, 1787-1793. doi:10.1016/S0277-5387(02)01044-6
[37] Traven, V.F., Manaev, A.V., Safronova, O.B., Chibisova, T.A., Lyssenko, K.A. and Antipin, M.Y. (2000) Electronic structure of π systems: XVIII.1 photoelectron spectrum and crystal structure of 3-acetyl-4-hydroxycoumarin. Russian Journal of General Chemistry, 70, 798-808.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.