Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods

DOI: 10.4236/jcpt.2012.22009   PDF   HTML     3,910 Downloads   7,457 Views   Citations


Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Sta-rink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a re-versal in the trend at x = 15 in Se80-xTe20Inx, which is explained in terms of mechanically stabilized structure at this composition.

Share and Cite:

R. Shukla, P. Agarwal and A. Kumar, "Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods," Journal of Crystallization Process and Technology, Vol. 2 No. 2, 2012, pp. 64-71. doi: 10.4236/jcpt.2012.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Physical Review Letters, Vol. 21, No. 20, 1968, pp. 1450-1453. doi:10.1103/PhysRevLett.21.1450
[2] M. A. Popescu, “Non Crystalline Chalcogenide,” Kluwer Academic Publishers, Springer, Berlin, 2002.
[3] D. P. Gosain, T. Shimizu, M. Ohmuru, M. Suzuki, T. Bando and S. Okano, “Some Properties of Sb2Te3–xSex or Nonvolatile Memory Based on Phase Transition,” Journal of Materials Science, Vol. 26, No. 12, 1991, pp. 3271- 3274. doi:10.1007/BF01124673
[4] K. Uchino, K. Takada, K. Ohno, H. Yoshida and Y. Ko-bayashi, “High-Density Pulse width Modulation Recording and Rewritable Capability in GeSbTe Phase-Change System Using Visible Laser Beam at Low Lenear Velo- city,” Japanese Journal of Applied Physics, Vol. 32, No. 115, 1993, pp. 5354-5360. doi:10.1143/JJAP.32.5354
[5] N. Nobukuni, M. Takashima, T. Ohno and M. Horie, “Microstructural Changes in GeSbTe Film during Repetitious Overwriting in Phase-Change Optical Recording,” Journal of Applied Physics, Vol. 78, No. 12, 1995, pp. 6980-6989. doi:10.1063/1.360465
[6] M. Nakamura, Y. Wang, O. Matusuda, K. Inoue and K. Murase, “Laser Spot Size Dépendance of Photo-Induced Crystallization Process in Amorphous GeSe2 Film,” Journal of Non-Crystalline Solids, Vol. 198-200, Part 2, 1996, pp. 740-743.
[7] L. Men, F. Jiang and F. Gan, “Short-Wavelength Phase-Change Optical Data Storage in In-Sb-Te Alloy Films,” Materials Science and Engineering: B, Vol. 47, No. 1, 1997, pp. 18-22.
[8] R. V. Woudenberg, “Short Wavelength Phase-Change Re- cording,” Japanese Journal of Applied Physics, Vol. 37, No. 4, 1998, pp. 2159-2162. doi:10.1143/JJAP.37.2159
[9] T. Z. Babeva, D. Dimitrov, S. Kitova and I. Konstantinov, “Optical Properties of Phase Change Optical Disks with SbxSe100–x Films,” Vacuum, Vol. 58, No. 2-3, 2000, pp. 496-501. doi:10.1016/S0042-207X(00)00211-6.
[10] V. I. Mikla, I. P. Mikhalko and V. V. Mikla, “Laser-In- duced Amorphous-to-Crystallite Phase Transition in Sbx Se1?x Alloys,” Materials Science and Engineering: B, Vol. 83, No. 1-3, 2001, pp. 74-78. doi:10.1016/S0921-5107(00)00803-5
[11] A. V. Kolobov and J. Tominaga, “Chalcogenide Glasses in Optical Recording: Recent Progress,” Journal of Opto- electronics and Advanced Materials, Vol. 4, No. 3, 2002, pp. 679-686.
[12] S. A. Khan, M. Zulfequar and M. Husain, “Laser-Induced Amorphisation and Crystallization on Se80Te20–xPbx Thin Films,” Vacuum, Vol. 72, No. 3, 2004, pp. 291-296. doi:10.1016/j.vacuum.2003.08.006
[13] G.-J. Zhang, D.-H. Gu and F.-X. Gan, “Optical Properties and Structure of Sb Rich AgInSbTe Phase Change Thin Films,” Chinese Physics, Vol. 14, No. 1, 2005, p. 218. doi:10.1088/1009-1963/14/1/040
[14] R. E. Simpson, Ph.D. Thesis, University of Southampton, 2008.
[15] A. W. Smith, “Injection Laser Writing on Chalcogenide Films,” Applied Optics, Vol. 13, No. 4, 1974, pp. 795- 798. doi:10.1364/AO.13.000795
[16] Z. H. Khan, M. Zulfequar, M. Illyas, M. Hussain and K. S. Begum, “Electrical and Thermal Properties of a-(Se70T e30)100–x(Se98Bi2)x Alloys,” Current Applied Physics, Vol. 2, No. 2, 2002, pp. 167-174.
[17] N. Mehta, M. Zulfequar and A. Kumar, “Crystallization Kinetics of Some Se-Te-Ag Chalcogenide Glasses,” Journal of Optoelectronics and Advanced Materials, Vol. 6, No. 2, 2004, pp. 441-448.
[18] A. S. Maan and D. R. Goyal, “Study of Crystallization Kinetics of Te5(InxSe100–x)95 Glassy Alloys,” Chalcoge-nide Letters, Vol. 4, No. 8, 2007, pp. 89-96.
[19] A. A. Soliman and M. B. E1-Den, “Crystallization Kinet- ics of the Cu0.3(SSe20)0.7 Chalcogenide Glasses,” Chalcogenide Letters, Vol. 4, No. 3, 2007, pp. 35-47.
[20] A. Ahmad, S. A. Khan, K. Sinha, M. Zulfequar and M. Hussain, “Crystallization and Glass Transition Kinetics in Se80Te20?xCdx Glasses by Using Non-Isothermal Measurement,” The European Physical Journal—Applied Physics, Vol. 38, No. 3, 2007, pp. 211-216. doi:10.1051/epjap:2007097
[21] M. A. Satar, M. A. Abdel-Rahim and A. El-Karashy, “A Study of the Crystallization Kinetics of Ge-Se-Te Glasses,” International Journal of Pure and Applied Physics, Vol. 3, 2007, pp. 59-68.
[22] N. Mehta, K. Singh and A. Kumar, “On the Glass Transition Phenomenon in Se-Te and Se-Ge Based Ternary Chalcogenide Glasses,” Physica B: Condensed Matter, Vol. 404, No. 12-13, 2009, pp. 1835-1839.
[23] M. Saxena and P. K. Bhatnagar, “Crystallization Study of Te-Bi-Se Glasses,” Bulletin of Material Science, Vol. 26, No. 5, 2003, pp. 547-551. doi:10.1007/BF02707355
[24] N. Mehta and A. Kumar, “Composition Dependence of the Activation Energy of the Glass Transition in Some Chalcogenide Glasses,” Philosophical Magazine Letters, Vol. 88, No. 11, 2008, pp. 793-800. doi:10.1080/09500830802385266
[25] M. Avrami, “Kinetics of Phase Change. I General Theory,” Journal of Chemical Physics, Vol. 7, No. 12, 1939, pp. 1103-1109.
[26] M. Avrami, “Kinetics of Phase Change. II Transformation— Time Relations for Random Distribution of Nuclei,” Journal of Chemical Physics, Vol. 8, No. 2, 1940, pp. 212-224.
[27] W. A. Johnson and R. F. Mehl, “Reaction Kinetics in Processes of Nucleation and Growth,” The American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 135, No. 8, 1939, pp. 416-442.
[28] M. Brown, “Introduction to Thermal Analysis: Techniques and Applications,” Kluwer Academic Publishers, Dordrecht, 2001.
[29] H. Yinnon and D. Uhlmann, “Applications of Thermo Analytical Techniques to Study the Crystallization Kinetics in Glass-Forming Liquids,” Journal of Non-Crystalline Sol- ids, Vol. 54, No. 7, 1983, pp. 253-275. doi:10.1016/0022-3093(83)90069-8
[30] S. Mahadevan, A. Giridhar and A. K. Singh, “Calorimetric Measurements on As-Sb-Se Glasses,” Journal of Non-Crystalline Solids, Vol. 88, No. 1, 1986, pp. 11-34. doi:10.1016/S0022-3093(86)80084-9
[31] H. E. Kissinger, “Varriation of Peak Temperature with Heating Rate in Diffe-rential Thermal Analysis,” Journal of Research of the National Bureau of Standards, Vol. 57, No. 4, 1956, pp. 217-221.
[32] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. doi:10.1021/ac60131a045
[33] T. Kujirai and T. Akahira, “Scientific Papers of the Institute of Physical and Chemical Research,” Vol. 2, 1925, p. 223.
[34] T. Akahira and T. T. Sunose, “Joint Convention of Four Electrical Institutes,” Report of Research, Chiba Institute of Technology, Vol. 16, 1971, pp. 22-31.
[35] T. Ozawa, “A New Method of Analyzing Thermo Gravimetric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, 1965, pp. 1881-1886.
[36] H. Flynn and A. Wall, “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data,” Journal of Polymer Science Part B, Vol. 4, No. 5, 1966, pp. 323-328.
[37] T. Ozawa, “Applicability of Friedman Plot,” The Journal of Thermal Analysis and Calorimetry, Vol. 31, No. 3, 1986, pp. 547-551. doi:10.1007/BF01914230
[38] H. L. Friedman, “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic,” Journal of Polymer Science, Vol. 6, No. 1, 1964, pp. 183-185.
[39] M. J. Starink, “A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate,” Thermochimica Acta, Vol. 288, No. 1-2, 1996, pp. 97-104. doi:10.1016/S0040-6031(96)03053-5
[40] M. J. Starink, “The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of the Isoconversion Methods,” Thermochimica Acta, Vol. 404, No. 1-2, 2003, pp. 163-176. doi:10.1016/S0040-6031(03)00144-8
[41] N. Mehta, M. Zul-fequar and A. Kumar, “Crystallization Kinetics of Some Se-Te-Ag Chalcogenide Glasses,” Journal of Optoelectronics and Advanced Materials, Vol. 6, No. 2, 2004, pp. 441-448.
[42] A. S. Maan, D. R. Goyal and A. Kumar, “Study of Crystallization Kinetics of Te5(InxSe100–x)95 Glassy Alloys,” Chalcogenide Letters, Vol. 4, No. 8, 2007, pp. 89-96.
[43] A. K. Agnihotri, A. Kumar and A. N. Nigam, “The K-Ab- sorption Studies in Glassy GexSe100–x,” Philosophical Magazine Letters, Vol. 58, No. 1, 1988, pp. 63-67. doi:10.1080/09500838808214732
[44] S. Asokan, G. Partha-sarthy and E. S. R. Gopal, “Pressure Dependence of Conductivity,” Philosophical Magazine Part B, Vol. 57, No. 1, 1988, pp. 49-55. doi:10.1080/13642818808205722
[45] J. C. Phillips and M. F. Thorpe, “Constraint Theory, Vector Percolation and Glass Formation,” Solid State Communications, Vol. 53, No. 8, 1985, pp. 699-702. doi:10.1016/0038-1098(85)90381-3

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.