Share This Article:

Occurrence of Fibonacci numbers in development and structure of animal forms: Phylogenetic observations and epigenetic significance

Abstract Full-Text HTML Download Download as PDF (Size:5856KB) PP. 216-232
DOI: 10.4236/ns.2012.44033    7,245 Downloads   12,384 Views   Citations
Author(s)    Leave a comment

ABSTRACT

A survey of zoological literature affirmed the wide occurrence of Fibonacci numbers in the organization of acellular and prokaryotic life forms as well as in some eukaryotic protistans and in the embryonic development and adult forms of many living and fossil remains of metazoan animals. A detailed comparative analysis of the axial skeleton of a fossil fish and humans revealed a new rule of the “nested triad” of bones organized along the proximal to distal axis of limb appendages. This growth pattern and its ubiquity among living vertebrates appear to underlie a profound rule of pattern formation that is dictated in part by the genetics and epigenetic mechanisms of stem cell clonal development.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wille, J. (2012) Occurrence of Fibonacci numbers in development and structure of animal forms: Phylogenetic observations and epigenetic significance. Natural Science, 4, 216-232. doi: 10.4236/ns.2012.44033.

References

[1] Cook. T.A. (1979) The curves of life. Dover Publications, Inc., New York.
[2] Thompson, D.W. (1943) On growth and form. Cambridge University Press/The MacMillan Company, New York.
[3] Weyl, H. (1952) Symmetry. Princeton University Press, Princeton.
[4] Livio, M. (2002) The golden ratio. Broadway Books, New York.
[5] Douady, S. and Couder, Y. (1992) Phyllotaxis as a physiccal self-organized process. Physical Review Letters, 68, 2098-2101. doi:10.1103/PhysRevLett.68.2098
[6] Stewart, I. (2011) The mathematics of life. Basic Books, New York, p. 49.
[7] Hofstadter, D.R. (1980) Goedel, Escher, Bach: An eternal braid. Vintage Books, New York.
[8] Schroeder, M. (1991) Fractals, Chaos, power laws. W.H. Freeman and Company, New York.
[9] Gleick, J. (1987) Chaos: Making a new science. Penguin Group, Viking, New York.
[10] Goodard, T., Huang, C. and Ferrin, T. (2004) New approaches for visualizing virus capsids. NCRR Principle Investigator Meeting, June 2004. http://www.cgl.ucsf.edu/Research/virus/poster/poster.html
[11] Liu, C., Fu, X., Lui, L., Ren, X., Chau, C.K.L., Li, S., Xiang, L., Zeng, H., Chen, G., Tang, L.-H., Lenz, P., Cui, X., Hunag, W., Hwa, T. and Huang, J.-D. (2011) Sequential establishment of stripe patterns in an expanding cell population. Science, 314, 238-241. doi:10.1126/science.1209042
[12] Bees M.A. and Hill, N.A. (1997) Wavelengths of bioconvection patterns. The Journal of Experimental Biology, 200, 1515-1526.
[13] Chatton, E. and Lwoff, A. (1930) Silver stain technique. Comptes Rendus Social Science Biologie Filiales, 104, 831-836.
[14] Williams, N.E. (2004) The epiplasm gene EPC1 influences cell shape and cortical pattern in Tetrahymena thermophilia. Journal of Eukaryotic Microbiology, 51, 201- 206. doi:10.1111/j.1550-7408.2004.tb00546.x
[15] Nelson, E.M. and Frankel, J. (2005) Regulation of corticotype through kinety insertion in Tetrahymena. Journal of Experimental Zoology, 210, 277-287. doi:10.1002/jez.1402100211
[16] Frankel, J. (1980) Propagation of cortical differences in Tetrahymena. Genetics, 94, 607-623.
[17] Nanney, D. (1966) Corticotype transmission in Tetrahymena. Genetics, 54, 955-968.
[18] Kaczanowska, J. and Dubielecka B. (1983) Pattern determination and pattern regulation in Paramecium tetraurelia. Journal of Embryology & Experimental Morphology, 74, 47-68.
[19] Klindworth, T. and Bardele, C.F. (1996) The ultrastructure of the somatic and oral cortex of the karyorelictean ciliate Loxodes. Acta Protozoologica, 35, 13-28.
[20] Borradaile, L.A., Potts, F.A., Eastham, L.E.S. and Saunders, J.T. (1958) The invertebrata. 3rd Edition, Cambridge University Press, Cambridge.
[21] Ehret, C.F. (1967) Paratene theory of the shapes of cells. Journal of Theoretical Biology, 15, 263-272. doi:10.1016/0022-5193(67)90207-X
[22] Potter, G.E. (1947) Textbook of zoology. 2nd Edition. The C.V. Mosby Company, Saint Louis.
[23] http://www.wikipedia.com/caenorhabditis
[24] Scott, R. (2003) Darwin and the Barnacle. W.W. Norton & Company, New York.
[25] Wille, J.J. (the year) Survey of Pecten shells collected at Atlantic Highlands, NJ.
[26] Romer, A.S. (1956) The vertebrate body. W.B. Saunders Company, Philadelphia.
[27] Hartenstein, R. (1976) Human anatomy & physiology: Priniciples and applications. D. Van Nostrand Company, New York.
[28] Hyman, L. H. (1942) Comparative Vertebrate Anatomy. 2nd Edition. The University of Chicago Press, Chicago.
[29] www.goldennumber.net/dna/htm
[30] Pourquie, O. (2003) The segmentation clock: Converting embryonic tissue time into spatial pattern. Science, 301, 328-330. doi:10.1126/science.1085887
[31] Cooke J. and Zeeman, E.C. (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology, 58, 455-476. doi:10.1016/S0022-5193(76)80131-2
[32] Kauffman, S.A. and Wille, J.J. (1974) The mitotic oscillator in Physarum polycephalum. Journal of Theoretical Biology, 55, 47-93. doi:10.1016/S0022-5193(75)80108-1
[33] Wille, J.J. (2011) Growth dynamics of individual clones of normal human keratinocytes: Observations and theoretical considerations. Natural Sciences, 3, 702-722. doi:10.4236/ns.2011.38094
[34] Pourquie, O. and Kusumi, K. (2001) When body segmentation goes wrong. Clinical genetics, 60, 409-416. doi:10.1034/j.1399-0004.2001.600602.x
[35] Kmita, M. and Duboule, D. (2003) Organizing axes in time and space: 25 years of collinear training. Science, 301, 331-333. doi:10.1126/science.1085753
[36] Lemons, D. and McGinnis, W. (2006) Genomic evolution of Hox gene clusters. Science, 313, 918-1922. doi:10.1126/science.1132040
[37] Irvine, S.Q. and Matindale, M.Q. (2001) Comparative analysis of hox gene expression in the polychaete Chaetopterus: Implications for the evolution of body plan regionalization. American Zoologist, 41, 640-651.
[38] Myers, P.Z. http://scienceblogs.com/pharyngula/2006/05/jellyfish
[39] Brady, G. (2000) Hox genes: The molecular architects. The Irish Scientist Year Book. www.ireland.com/newspaper/science/2000/065/sci.htm.
[40] Dawkins, R. (2004) The Ancestor’s Tale: The Dawn of Evolution. A Mariner Book: Houghton Mifflin Company, Boston, New York, 418-424.
[41] Myers, P.Z. (2006). Jellyfish lack true Hox genes! http://scienceblogs.com/pharyngula/2006/05/jellyfish_lack_true_hox_genes.php
[42] Myers, P.Z. (2004) A brief overview of HOX genes. http://scienceblogs.com/pharyngula/2004/brief_overview_of_hox_genes
[43] Carroll, S. Grenier, J.K. and Weatherbee, S.D. (2001) From DNA to diversity: Molecular genetics and the evolution of animal design. Blackwell Scientific, Maiden.
[44] Steinmetz, P.R., Kostyuchenko, R.P., Fischer, C. and Arendt, D. (2011) The segmental pattern of otx, gbx, and HOX genes in the annelid Platynereis dumerilli. Evolution & Development, 13, 72-79. doi:10.1111/j.1525-142X.2010.00457.x
[45] Rancourt, D. (1998) Establishment of spatial patterns of gene expression during early vertebrate development: HOX genes. http://ucalgary.ca/uofc/eduweb/virtualembryo/hox.hml
[46] King, B.L. Gillis, J.A., Carlisle, H.R. and Dahn, R.D. (2011) A natural deletion of the Hox C cluster in elasmobrach fishes. Science, 334, 1517.
[47] Browder, L.W., Erickson, C.A. and Jeffery, W.R. (1991) Developmental biology. 3rd Edition, Saunders College Publishing, Philadelphia.
[48] Shankland, M. and Seaver, E.C. (2000) Evolution of the bilateral body plan: What have we learned from annelids. Proceedings of the National Academy of Sciences, 97, 4436-4437. doi:10.1073/pnas.97.9.4434

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.