Seasonal Dynamics of Nutrient Loading and Chlorophyll A in a Northern Prairies Reservoir, Saskatchewan, Canada


Harmful algae blooms have become an increasing concern in context with the safety of water resources around the globe; however, little is known about the dynamics and specific causes of such blooms in the prairie ecozone in North America. The aim of this study was to research the nitrogen (N) and phosphorous (P) content and nutrient limitation (defined as N and P limitation) of growth of cyanobacteria in a northern prairies reservoir (Lake Diefenbaker [LD], SK, Canada). A combination of concentration balance analysis for N and P, controlled bioassays with the natural consortium of phytoplankton or defined monocultures of cyanobacteria, and satellite imagery was applied to address this aim. The current trophic status of Lake Diefenbaker is one of moderate eutrophication. Primary production in the lake is P-limited, and N did not represent a limiting factor for algal production. There was no significant increase in TP con- centrations between the upper and lower portions of the reservoir, indicating that most of the phosphorus in LD comes from upstream sites in Alberta. Anabaena circinalis, a species that has the potential to seriously degrade lake ecosys- tems, was identified as the predominant cyanobacteria in LD. Together with the fact that TP influxes into the reservoir primarily originate from upstream sources, these results suggest the need for remedial measures in the upstream reach of the South Saskatchewan River. Satellite imaging represented a promising approach in support of monitoring for po- tential algal blooms in LD; however, due to limited sensitivity and issues associated with atmosphere interference this methodology should only be used in combination with in situ water quality monitoring. In summary, while this study indicated that Lake Diefenbaker is potentially at risk with cyanobacteria blooms (some of which such as Anabena sp. that can produce toxins) during late summer and fall, development of clear causal relationships and risk assessment strategies is currently limited due to lack of monitoring data and programs.

Share and Cite:

M. Hecker, J. Khim, J. Giesy, S. Li and J. Ryu, "Seasonal Dynamics of Nutrient Loading and Chlorophyll A in a Northern Prairies Reservoir, Saskatchewan, Canada," Journal of Water Resource and Protection, Vol. 4 No. 4, 2012, pp. 180-202. doi: 10.4236/jwarp.2012.44021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. W. Schindler, P. J. Dillon and H. Schreier, “A Review of Anthropogenic Sources of Nitrogen and Their Effects on Canadian Aquatic Ecosystems,” Biogeochemistry, Vol. 79, No. 1-2, 2006, pp. 25-44. doi:10.1007/s10533-006-9001-2
[2] D. F. Millie, C. P. Dionigi, O. Schofield, G. J. Kirkpattrick and P. A. Tester, “The Importance of Understanding the Molecular, Cellular, and Ecophysiological Bases of Harmful Algal Blooms,” Journal of Phycology, Vol. 35, No. 6, 1999, pp. 1353-1355. doi:10.1046/j.1529-8817.1999.3561353.x
[3] D. R. Figueiredo, U. M. Azeiteiro, S. M. Esteves, F. J. M. Goncalves and M. J. Pereira, “Microcystin-Producing Blooms—A Serious Global Public Health Issue,” Eco- toxicology and Environmental Safety, Vol. 59, No. 2, 2004, pp. 151-163. doi:10.1016/j.ecoenv.2004.04.006
[4] J. Baricia, “Water Quality Problems Associated with High Productivity of Prairie Lakes in Canada: A Review,” Water Quality Bulletin, Vol. 12, 1987, pp. 107-115.
[5] World Wildlife Fund, “Canada’s Rivers at Risk,” 2009.
[6] D. M. Rosenberg, P. A. Chambers, J. M. Culp, G. Franzin, P. A. Nelson, A. G. Salkim, P. Stainton, A. Bodaly and R. W. Newbury, “Nelson and Churchill River Basins,” In: A. Benke and C. Cushing, Eds., Rivers of North America, Elsevier, Amsterdam, 2005, pp. 852-901. doi:10.1016/B978-012088253-3/50022-5
[7] J. Pomeroy, D. de Boer and L. Martz, “Hydrology and Wa- ter Resources of Saskatchewan,” Centre for Hydrology Report #1, University of Saskatchewan, Saskatoon.
[8] Saskatchewan Watershed Authority, 2011.
[9] International Lake Environment Committee, “Lake Die- fenbaker,” 2011.
[10] Alberta Institute of Agrologists, “Environment for Growth: People to Water, Water to People,” 2005.
[11] C. S. Reynolds and A. E. Walsby, “Water Blooms,” Bio- logical Reviews, Vol. 50, No. 4, 1975, pp. 437-481. doi:10.1111/j.1469-185X.1975.tb01060.x
[12] R. L. Peter, S. B. Curtis, E. Cortney and P. Alain, “Land- scape-Scale Effects of Urban Nitrogen on a Chain of Freshwater Lakes in Central North America,” Limnology and Oceanography, Vol. 51, No. 5, 2006, pp. 2262-2277. doi:10.4319/lo.2006.51.5.2262
[13] J. M. Jacoby, D. C. Collier, E. B. Welch, F. J. Hardy and M. Crayton “Environmental Factors Associated with a Toxic Bloom of Microcysitis aeruginosa,” Canadian Jour- nal of Fisheries and Aquatic Sciences ,Vol. 57, No. 1, 2007, pp. 231-240. doi:10.1139/f99-234
[14] Tourism Saskatchewan, “Lake Diefenbaker Tourism Des- tination Plan,” 2008.
[15] K. E. Havens, R. T. James, T. L. East and V. H. Smith, “N:P Ratios, Light Limitation, and Cyanobacterial Domi- nance in a Subtropical Lake Impacted by Non-Point Source Nutrient Pollution,” Environmental Pollution, Vol. 122, No. 3, 2003, pp. 379-390. doi:10.1016/S0269-7491(02)00304-4
[16] D. W. Schindler, R. E. Hecky, D. L. Findlay, M. P. Stain- ton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng and S. E. M. Kasian “Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37- Year Whole-Ecosystem Experiment,” PNAS, Vol. 105, No. 32, 2008, pp. 11254-11258. doi:10.1073/pnas.0805108105
[17] H. W. Paerl, N. S. Hall and E. S. Calandrino “Controlling Harmful Cyanobacterial Blooms in a World Experiencing Anthropogenic and Climatic-Induced Change,” Science of the Total Environment, Vol. 409, No. 10, 2011, pp. 1739-1745. doi:10.1016/j.scitotenv.2011.02.001
[18] J. G. Rueter and R. R. Petersen “Micronutrient Effects on Cyanobacterial Growth and Physiology,” New Zealand Journal of Marine Freshwater Research, Vol. 21, No. 3, 1987, pp. 435-445. doi:10.1080/00288330.1987.9516239
[19] L. E. Brand “Minimum Iron Requirements of Marine Phy- toplankton and the Implications for the Biogeochemical Control of New Production,” Limnology and Oceanog- raphy, Vol. 36, No. 8, 1991, pp. 1756-1771. doi:10.4319/lo.1991.36.8.1756
[20] R. L. North, S. J. Guildford, R. E. H. Smith, S. M. Havens and M. R. Twiss “Evidence for Phosphorus, Nitrogen, and Iron Colimitation of Phytoplankton Communities in Lake Erie,” Limnology and Oceanography, Vol. 52, No. 1, 2007, pp. 315-328. doi:10.4319/lo.2007.52.1.0315
[21] D. F. Millie, G. L. Fahnenstiel, J. D. Bressie, R. J. Pigg, R. R. Rediske, D. M. Klarer, P. A. Tester and R. W. Li- taker “Late-Summer Phytoplankton in Western Lake Erie (Laurentian Great Lakes): Bloom Distributions, Toxicity, and Environmental Influences,” Aquatic Ecology, Vol. 43, No. 4, 2009, pp. 915-934. doi:10.1007/s10452-009-9238-7
[22] OECD, “Eutrophication of Water, Monitoring, Assess- ment and Control,” Organization for Economic Coopera- tion and Development (OECD), Paris, 1982.
[23] C. J. Lorenzen, “Determination of Chlorophyll and Pheo- Pigments: Spectrophotometric Equations,” Limnology and Oceanography, Vol. 12, No. 2, 1967, pp. 343-346. doi:10.4319/lo.1967.12.2.0343
[24] S. W. Jeffrey and G. F. Humphrey, “New Spectrophotometric Equations for Determining Chlorophyll a, b c1 and c2 in Higher Plants, Algae and Natural Phytoplank- ton,” Biochemie und Physiologie der Pflanzen, Vol. 167, 1975, pp. 191-194.
[25] US-EAP, “In Vitro Determination of Chlorophyll A and Pheophytin A in Marine and Freshwater Algae by Fluo- rescence,” US Environmental Protection Agency (EPA) Cincinnati, 1997.
[26] Environment Canada, “Guidance Document on Statistical Methods for Environmental Toxicity Tests,” Ottawa, 2005.
[27] J. N. Boyer, C. R. Kelble, P. B. Ortner and D. T. Rudnick “Phytoplankton Bloom Status: Chlorophyll A Biomass as an Indicator of Water Quality Condition in the Southern Estuaries of Florida, USA,” Ecological Indicators, Vol. 9S, No. 6, 2009, pp. S56-S57. doi:10.1016/j.ecolind.2008.11.013
[28] E. Rott, “Chlorophyll-A-Konzentrationen und Zellvolumen als Parameter der Phytoplakntonbiomasse,” Ber. Nat.-Med. Ver. Innsbruck, Vol. 65, 1978, pp. 11-21
[29] K. A. Moser, J. P. Smol, G. M. MacDonald and G. P. S. Larsen, “19th Century Eutrophication of a Remote Boreal Lake: A Consequence of Climate Warming?” Journal of Paleolimnology, Vol. 28, No. 2, 2002, pp. 269-281. doi:10.1023/A:1021635024757
[30] P. Werner and J. P. Smol, “Diatom-Environmental Rela- tionships and Nutrient Transfer Functions from Contrast- ing Shallow and Deep Limestone Lakes in Ontario, Can- ada,” Hydrobiologia, Vol. 533, No. 1-3, 2005, pp. 145- 173. doi:10.1007/s10750-004-2409-6
[31] P. Van Hove, C. Belzile, A. E. G. John and F. V. War- wick, “Coupled Landscape-Lake Evolution in High Arc- tic Canada,” Canadian Journal of Earth Science, Vol. 43, No. 5, 2006, pp. 533-546. doi:10.1139/e06-003
[32] D. R. Euan and P. S. John, “Diatom-Environmental Rela- tionships in 64 Alkaline Southeastern Ontario (Canada) Lakes: A Diatom-Based Model for Water Quality Recon- structions,” Journal of Paleolimnology, Vol. 25, No. 1, 2001, pp. 25-42. doi:10.1023/A:1008123613298
[33] Y. S. Li, X. Chen, O. W. Wai and B. King, “Study on the Dynamics of Algal Bloom and Its Influence Factors in Tolo Harbour, Hong Kong,” Water Environment Research, Vol. 76, No. 7, 2004, pp. 2643-2654.
[34] Q. Chen, H. J. Han, S. J. Zhai and W. P. Hu, “Innuence of Solar Radiation and Water Temperallre on Chlorophyll-a Levels in Lake Taihu, China,” Acta Scientiae Circumstantiae, Vol. 29, 2009, pp. 199-206.
[35] I. Kanoshina, U. Lips and J.-M. Lepp?nen “The Influence of Weather Conditions (Temperature and Wind) on Cyanobacterial Bloom Development in the Gulf of Fin- land (Baltic Sea),” Harmful Algae, Vol. 2, No. 1, 2003, pp. 29-41. doi:10.1016/S1568-9883(02)00085-9
[36] M. Kahru and J.-M. Leppanen “Cyanobacterial Blooms Cause Heating of the Sea Surface,” Marine Ecology Progress Series, Vol. 101, 1993, pp. 1-7. doi:10.3354/meps101001
[37] L. Weikun, X. Guoqing, Y. Lingxiang and Y. Shuping “Dis- tribution of Bluealga Bloom over Dianchi Lake Moni- tored with MODIS Remote Sensing Images,” Meteoro- logical Science and Technology, Vol. 37, No. 5, 2009, pp. 618-620.
[38] Y. Zhang, S. Lin, X. Qian, Q. Wang, Y. Qian, J. Liu and Y. Ge, “Temporal and Spatial Variability of Chlorophyll A Concentration in Lake Taihu Using MODIS Time- Series Data,” Hydrobiologia, Vol. 661, No. 1, 2011, pp. 235- 250. doi:10.1007/s10750-010-0528-9
[39] X. Wang, S. Bai, X. Lu, Q. Li, X. Zhang and L. Yu, “Eco- logical Risk Assessment of Eutrophication in Songhua Lake, China,” Stochastic Environmental Research and Risk Assessment, Vol. 22, No. 4, 2008, pp. 477-486. doi:10.1007/s00477-007-0147-9
[40] S. J. Guildford and R. E. Hecky “Total Nitrogen, Total Phosphorus and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship?” Limnology and Oce- anography, Vol. 45, No. 6, 2000, pp. 1213-1223. doi:10.4319/lo.2000.45.6.1213
[41] United States Environmental Protection Agency (EPA), “Nutrient Criteria Technical Guidance Manual Lakes and Reservoirs,” EPA-822-B00-001, 2000.
[42] J. A. Downing and E. McCauley, “The Nitrogen: Phos- phorus Relationship in Lakes,” Limnology and Oceanog- raphy, Vol. 37, No. 5, 1992, pp. 936-945. doi:10.4319/lo.1992.37.5.0936
[43] R. S. Sternberger and E. K. Miller, “A Zooplankton N:P- Ratio Indicator for Lakes,” Stochastic Environmental Re- search and Risk Assessment, Vol. 51, No. 1-2, 1998, pp. 29-51. doi:10.1023/A:1005965223474
[44] M. A. Donald, M. G. Patricia and M. B. Joann, “Harmful Algal Blooms and Eutrophication Nutrient Sources, Com- position, and Consequences,” Estuaries and Coasts, Vol. 25, No. 4, 2002, pp. 704-726. doi:10.1007/BF02804901
[45] R. A. Vollenweider, “Elemental and Biochemical Com- position of Plankton Biomass: Some Comments and Ex- plorations,” Arch fur Hydrobiologie, Vol. 105, No. 5, 1985, pp. 11-29.
[46] I. Chorus and J. Bartram, “Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitor- ing and Management,” F & FN Spon, London, 1999.
[47] G. E. Fogg “The Physiology of an Algal Nuisance,” Pro- ceedings of the Royal Society B, Vol. 173 1969, pp. 175- 189. doi:10.1098/rspb.1969.0045

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.