Effect of Copper Content on Compressive Strength and Microstructure of Dental Amalgams

Abstract

The main goal of this research is to investigate the effect of copper on compressive strength of dental amalgam. For this purpose amalgam capsules with two different content of copper were used. Cylindrical samples with diameter to height ratio 1 to 2, were prepared via molding method. To evaluate the role of copper element on compressive strength, com-pression test was done at different strain rates i.e. 0.02, 0.2, 0.4 and 2 min–1. The results and microscopic evaluations showed that an increase in copper content in amalgam caused to eliminate gamma2 phase and leaded to promote compressive strength.

Share and Cite:

A. Hasheminezhad, S. Zebarjad, S. Sajjadi and L. Rahanjam, "Effect of Copper Content on Compressive Strength and Microstructure of Dental Amalgams," Engineering, Vol. 4 No. 3, 2012, pp. 155-159. doi: 10.4236/eng.2012.43020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Bracho-Troconis, P. Colon, J.-D. Bartout and Y. Bienvenu, “Influence of Thermal Treatments on Ag Sn Cu Powders in Order to Reduce Mercury Contents in Dental Amalgam,” Journal of Materials Science: Materials in Medicine, Vol. 11, No. 1, 2000, pp. 1-9. doi:10.1023/A:1008979532764
[2] R. G. Craig and J. M. Powers, “Restorative Dental Materials,” Mosby, St. Louis, 2002.
[3] S. Tsutsumi, M. Nakamura, J. L. Ferracane, T. L. Schiller, T. Hanawa and T. Okabe, “Thermal Analysis of Amal- gams,” Dental Materials, Vol. 4, No. 5, 1988, pp. 307- 311. doi:10.1016/S0109-5641(88)80027-7
[4] T. Okabe and R. J. Mitchell, “Setting Reactions in Dental Amalgam. Part 2. The Kinetics of Amalgamation,” Critical Reviews in Oral Biology & Medicine, Vol. 7, No. 1, 1996, pp. 23-35. doi:10.1177/10454411960070010201
[5] T. Okabe, R. J. Mitchell and C. W. Fairhurst, “A Study of High Copper Amal-gams. IV. Formation of η Cu-Sn (Cu6Sn5) Crystals in a High Copper Dispersant Amalgam Matrix,” Journal of Dental Re-search, Vol. 58, No. 3, 1979, pp. 1087-1092. doi:10.1177/00220345790580031001
[6] L. D. Zardiackas and S. C. Bayne, “Fatigue Characteriza- tion of Nine Dental Amalgam,” Biomaterials, Vol. 6, No. 1, 1985, pp. 49-54.
[7] Y. U?ar and W. A. Brantley, “Biocompatibility of Dental Amalgams,” International Journal of Dentistry, 2011, pp. 1-7. doi:10.1155/2011/981595
[8] A. M. Iglesias, S. E. Sorensen, J. M. Carter and R. A. Wilko, “Some Properties of High-Copper Amalgam Alloys Comparing Hand and Mechanical Trituration,” The Journal of Prosthetic Dentistry, Vol. 52, No. 2, 1984, pp. 194-198. doi:10.1016/0022-3913(84)90094-5
[9] D. F. Murchison, E. S. Duke, B. K. Norling and T. Okabe, “The Effect of Trituration Time on the Mechanical Properties of Four High-Copper Amalgam Alloys,” Dental Materials, Vol. 5, No. 2, 198, pp. 74-76.
[10] D. B. Mahler and J. D. Adey, “Microprobe Analy-sis of a High Cu Amalgam Alloy,” Journal of Dental Research, Vol. 56, No. 4, 1977, pp. 379-384. doi:10.1177/00220345770560040501
[11] L. D. Zardiackas and L. Anderson Jr., “Crack Propagation in Conventional and High Copper Dental Amalgam as a Function of Strain Rate,” Biomaterials, Vol. 7, No. 4, 1986, pp. 259-62. doi:10.1016/0142-9612(86)90046-3
[12] L. Wang, P. Henrique P. D'Alpino, L. G. Lopes and J. C. Pereira, “Mechanical Properties of Dental Restorative Materials,” Journal of Applied Oral Science, Vol. 11 No. 3, 2003. doi:10.1590/S1678-77572003000300002
[13] K.-J. M. S?d?erholm, “An X-Ray Diffractometric Investi- gation of the Sn-Hg Binary System within the 0% - 40% Hg,” Journal of Dental Research, Vol. 66, 1987, pp. 712- 715.
[14] D. B. Mahler, “The High-Copper Dental Amalgam Alloys,” Journal of Dental Research, Vol. 76, No. 1, 1997, pp. 537-541. doi:10.1177/00220345970760010301

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.