Share This Article:

Attenuation in a Cylindrical Left Handed Material (LHM) Wave-Guide Structure

Abstract Full-Text HTML XML Download Download as PDF (Size:657KB) PP. 46-53
DOI: 10.4236/opj.2012.21007    4,095 Downloads   7,331 Views   Citations

ABSTRACT

This paper tackles the wave attenuation along with a cylindrical waveguides composed of a left Handed material (LHM), surrounded by a superconducting or metal wall. I used the transcendental equations for both TE and TM waves. I found out that the waveguide supports backward TE and backward TM waves since both permittivity and magnetic permeability of LHM are negative. I also illustrated the dependence of the TE and TM wave attenuation on the wave frequency and the reduced temperature of the superconducting wall (T/Tc). Attenuation constant increases by increasing the wave frequency and it shows higher values at higher T/Tc. Lowest wave attenuation and the best confinement are achieved for the thickest TE waveguide. LHM-superconductor waveguide shows lower wave attenuation than LHM-metal waveguide.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Mousa, "Attenuation in a Cylindrical Left Handed Material (LHM) Wave-Guide Structure," Optics and Photonics Journal, Vol. 2 No. 1, 2012, pp. 46-53. doi: 10.4236/opj.2012.21007.

References

[1] L. Hu and S. T. Chui, “Characteristics of Electromagnetic Wave Propagation in Uniaxially Anisotropic Left-Handed Materials,” Physical Review: B, Vol. 66, No. 8, 2002, p. 085108. doi:10.1103/PhysRevB.66.085108
[2] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of Permittivity and Permeability,” Soviet Physics Uspekhi, Vol. 10, No. 4, 1967, p. 509. doi:10.1070/PU1968v010n04ABEH003699
[3] I. V. Shadrivov, A. A. Sukhorakov and Y. S. Kivshar, “Nonlinear Surface Waves in Left-Handed Material,” Physical Review: E, Vol. 69, No. 1, 2004, p. 016617. doi:10.1103/PhysRevE.69.016617
[4] R. A. Shelby, D. R. Smith and S. Schultz, “Microwave Transmission Through a Two-Dimensional, Isotropic, Left- Handed Meta-Material,” Applied Physics Letter, Vol. 78, No. 4, 2001, pp. 489-491. doi:10.1063/1.1343489
[5] N. Garcia and M. Nieto, “Left-Handed Materials Do Not Make a Perfect Lens,” Physical Review Letter, Vol. 88, No. 20, 2002, p. 207403. doi:10.1103/PhysRevLett.88.207403
[6] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letter, Vol. 85, No. 18, 2000, pp. 3966. doi:10.1103/PhysRevLett.85.3966
[7] W. T. Lu and S. Sridhar, “Flat Lens without Optical Axis: Theory of Imaging,” Optics Express, Vol. 13, No. 26, 2005, pp. 10673-10680. doi:10.1364/OPEX.13.010673
[8] P. Vodo, W. T. Lu, Y. Huang and S. Sridhar, “Negative Refraction and Plano-Concave Lens Focusing in One- Dimensional Crystals,” Applied Physics Letter, Vol. 89, No. 8, 2006, p. 084104. doi:10.1063/1.2338644
[9] I. I. Smolyaninov, Y. J. Hung and C. C. Davis, “Magnifying Superlens in the Visible Frequency Range,” Science, Vol. 315, No. 5819, 2007, pp. 1699-1701. doi:10.1126/science.1138746
[10] J. R. Tucker and M. J. Feldman, “Quantum Detection at Millimeter Wavelengths,” Review of Modern Physics, Vol. 57, No. 4, 1985, pp. 1055-1113. doi:10.1103/RevModPhys.57.1055
[11] M. J. Wengler, “Sub-Millimeter-Wave Detection with Su- perconducting Tunnel Diodes” Proceedings of the IEEE, Vol. 80, No. 11, 1992, pp. 1810-1826. doi:10.1109/5.175257
[12] H. M. Mousa, M. M. Shabat, H. Khalil and D. Jager, “Non-Linear Surface Waves along the Boundary of Mag- netic Superlattices (LANS),”Proceedings of SPIE, Vol. 5445, 2003, pp. 274-278. doi:10.1117/12.560650
[13] H. M. Mousa and M. M.Shabat, “Non Linear TE Surface Waves on Magnetic (LANS) Superlattices,” International Journal of Modern Physics B, Vol. 19, No. 29, 2005, pp. 4359-4369. doi:10.1142/S0217979205032796
[14] H. M. Mousa and M. M.Shabat, “ Non linear TE Surface in a Left-Handed Material and Superlattices Wave-Guide structures,” International Journal of Modern Physics B, Vol. 21, No. 6, 2007, pp. 895-906. doi:10.1142/S0217979207036746
[15] M. M. Shabat and H. M. Mousa, “The Propagation of Electromagnetic TE Surface Waves in Magnetic Superlattices (LANS) Film,” Proceedings of SPIE, Vol. 6582, 2007. doi:10.1117/12.721062
[16] Y. J. Huang, W. T. Lu and S. Sridhar, “Nanowire Wave- guide Made from Extremely Anisotropic Meta-Materi- als,” Physical Review: A, Vol. 77, No. 6, 2008, p. 063836. doi:10.1103/PhysRevA.77.063836
[17] K. H. Yeap, C. Y. Tham, K. C. Yeong and H. J. Woo, “Wave Propagation in Lossy and Superconducting Circular Waveguides, “Radioengeneering, Vol. 19, No. 2, 2010, pp. 320-325.
[18] M. M.Shabat and D. Jager, “Magnetostatic Surface Wave in a Superconductor-Ferrite Structure,” 5th International Workshop on Integrated Nonlinear Microwave and Millimeter wave Circuits, Dusiburge, 1-2 October 1998.
[19] C. J. Wu, “Tunable Microwave Characteristics of a Superconducting Planar Transmission Line by Using a Non- linear Dielectric Thin Film,” Journal of Applied Physics, Vol. 87, No. 1, 2000, p. 493. doi:10.1063/1.371889
[20] R. D. Black, T. A. Early, P. B. Roemer, O. M. Mueller, A. Campero, L. G. Turner and G. A. Johnson, “A high-tem- perature Superconducting Receiver for Nuclear Magnetic Resonance Microscopy,” Science, Vol. 259, No. 5096, 1993, pp. 793-795. doi:10.1126/science.8430331
[21] E. Denlinger, R. Paglione, D. Kalokitis, E. Belohoubek, A. Pique, X. D. Wu, T. Venkatesan, A. Fathy, V. Pen- drick, S. Green and S. Mathews, “Superconducting Non- reciprocal Devices for Microwave Systems,” IEEE Mi- crowave and Guided Wave Letters, Vol. 2, No. 11, 1992, pp. 449-451. doi:10.1109/75.165640
[22] G. Mohazzab and I. M. Low, “Electrical Properties of Epoxy-Modified YBCD Semiconducting Ceramics,” Jour- nal of material Science Letters, Vol. 16, No. 1, 1987, pp. 88-90. doi:10.1023/A:1018517305021
[23] J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill, Boston, 1941, pp. 527-542.
[24] D. K. Cheng, “Field and Wave Electromagnetics,” 2nd Edition, Addison Wesley, Inc., Boston, 1989, pp. 547- 557.
[25] C. Y. Tham, A. Mccowen and M. S. Towers, “Modelling of PCD Transients with Boundary Elements Method of Moments in the Frequency Domain,” Engineering Analy- sis with Boundary Elements, Vol. 27, No. 4, 2003, pp. 315-323. doi:10.1016/S0955-7997(02)00119-4
[26] M. Tsutsumi, T. Fukusako and S. Yoshida, “Propagation Characteristics of the Magneto-Static Surface Wave in the YBCO-YIG Film-layered Structure,” IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 8, 1996, p. 1410. doi:10.1109/22.536023
[27] D. Mihalache, R. G. Nazmitdinov and V. K. Fedyanin, “Nonlinear Optical Waves in Layered Structure,” Soviet Journal of Nuclear Physics, Vol. 20, 1989, pp. 86-107.
[28] H. M. Mousa and M. M.Shabat, “TM Plasmons in a Cylindrical Superlattices (LANS) Waveguide Structure,” Journal of Nano- and Electronic Physics, Vol. 3, No. 3, 2011, pp. 15-17.
[29] H. Ebara, T. Inoue and O.Hashimoto, “Measurement Method of Complex Permittivity and Permeability for a Powdered Material using a Waveguide in Microwave Band,” Science and Technology Advanced Material, Vol. 7, No. 1, 2006, pp. 77-83. doi:10.1016/j.stam.2005.11.019

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.