Share This Article:

Fabrication of Poly(Aspartic Acid)-Nanogold Modified Electrode and Its Application for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid

Abstract Full-Text HTML Download Download as PDF (Size:1629KB) PP. 195-203
DOI: 10.4236/ajac.2012.33028    7,185 Downloads   12,128 Views   Citations

ABSTRACT

A nanostructured polymer film incorporated gold nanoparticles modified electrode was fabricated. The fabrication process involved a previous electropolymerization of aspartic acid and followed by the eletrodeposition of gold nano-particles on the glassy carbon electrode. The resulting poly (aspartic acid)-nanogold modified electrode (PAA- nano-Au/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectros-copy (EIS). A higher catalytic activity was obtained to electrocatalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) due to the enhanced peak current and well-defined peak separations compared with three, bare GCE, PAA/GCE and nano-Au/GCE. Simultaneous determination of DA, AA, and UA were studied by voltammetry. The linear range of 5.0 × 10-7 - 1.0 × 10-4 M for DA, 5.0 × 10-6 - 2.0 × 10-3 M for AA and 5.0 × 10-6 - 1.0 × 10-3 M for UA was obtained. The detection limit was calculated for DA, AA and UA as being 6.5 × 10-8 M, 5.6 × 10-7 M and 3.0 × 10-7 M, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of DA, AA and UA in calf serum and fetal calf serum samples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Li and X. Zhang, "Fabrication of Poly(Aspartic Acid)-Nanogold Modified Electrode and Its Application for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid," American Journal of Analytical Chemistry, Vol. 3 No. 3, 2012, pp. 195-203. doi: 10.4236/ajac.2012.33028.

References

[1] R. P. Da Silva, A. W. O. Lima and S. H. P. Serrano, “Simultaneous Voltammetric Detection of Ascorbic Acid, Dopamine and Uric Acid Using a Pyrolytic Graphite Electrode Modified Into Dopamine Solution,” Analytica Chimca Acta, Vol. 612, No. 1, 2008, pp. 89-98. doi:10.1016/j.aca.2008.02.017
[2] X. Zhou, N. Zheng, S. R. Hou, X. J. Li and Z. B. Yuan, “Selective Determination Of Dopamine in the P-Resence of Ascorbic Acid at a Multi-Wall Carbon Nano-Tube- Poly(3,5-Dihydroxy Benzoic Acid) Film Modified Electrode,” Journal of Electroanalytical Chemistry, Vol. 642, No. 1, 2010, pp. 30-34. doi:10.1016/j.jelechem.2010.01.028
[3] T. J. Yin, W. Z. Wei and J. X. Zeng, “Selective Detection of Dopamine in the Presence of Ascorbic Acid by Use of Glassy-Carbon Electrodes Modified with Both Polyaniline Film and Multi-Walled Carbon Nanotubes with Incorporated β-Cyclodextrin,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 7-8, 2006, pp. 2087-2094. doi:10.1007/s00216-006-0845-z
[4] J. B. Raoof, A. Kiani, R. Ojani, R. Valiollahi and S. R. Nadimi, “Simultaneous Voltam-metric Determination of Ascorbic Acid and Dopamine at the Surface of Electrodes Modified with Self-Assembled Gold Nanoparticle Films,” Journal of Solid State Electrochemistry, Vol. 14, No. 7, 2010, pp. 1171-1176. doi:10.1007/s10008-009-0917-z
[5] O. Arrigoni and M. C. De Tullio, “Ascorbic Acid: More than Just an Antioxidant,” Biochimica et Biophysica Acta, Vol. 1569, No. 1-3, 2002, pp. 1-9. doi:10.1016/S0304-4165(01)00235-5
[6] V. V. S. Eswara Dutt and H. A. Mottola, “Determination of Uric Acid at the Microgram Level by a Kinetic Procedure Based on a Pseu-do-Induction Period,” Analytical Chemistry, Vol. 46, No. 12, 1974, pp. 1777-1781. doi:10.1021/ac60348a041
[7] W. N. Hu, D. M. Sun and W. Ma, “Silver Doped Poly(L-Valine) Modified Glassy Carbon Electrode for the Simultaneous Determination of Uric Acid, Ascorbic Acid and Dopamine,” Electroanalysis, Vol. 22, No. 5, 2010, pp. 584-589. doi:10.1002/elan.200900376
[8] C. F. Tang, S. A Kumar and S. M. Chen, “Zinc Oxide/Redox Me-diator Composite Films-Based Sensor for Electrochemical Detection of Important Biomolecules,” Analytical Biochemistry, Vol. 380, No. 2, 2008, pp. 174- 183. doi:10.1016/j.ab.2008.06.004
[9] J. S. Huang, Y. Liu, H. Q. Hou and T. Y. You, “Simultaneous Electrochemical Determination of Dopamine, Uric Acid and Ascorbic Acid Using Palla-dium Nanoparticle- Loaded Carbon Nanofibers Modified Electrode,” Biosensors and Bioelectronics, Vol. 24, No. 4, 2008, pp. 632- 637. doi:10.1016/j.bios.2008.06.011
[10] A. Salimi, H. MamKhezri and R. Hallaj, “Simultaneous Determination of Ascorbic Acid, Uric Acid and Neuro-transmitters with a Carbon Ceramic Electrode Prepared by Sol-Gel Technique,” Talanta, Vol. 70, No. 4, 2006, pp. 823-832. doi:10.1016/j.talanta.2006.02.015
[11] S. Thiagarajan and S. M. Chen, “Preparation and Charac- terization of Ptau Hybrid Film Modified Electrodes and Their Use in Simultaneous De-termination of Dopamine, Ascorbic Acid and Uric Acid,” Talanta, Vol. 74, No. 2, 2007, pp. 212-222. doi:10.1016/j.talanta.2007.05.049
[12] A. Safavi, N. Maleki, O. Moradlou and F. Tajabadi, “Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid Using Carbon Ionic Liquid Electrode,” Analytical Biochemistry, Vol. 359, No. 2, 2006, pp. 224-229. doi:10.1016/j.ab.2006.09.008
[13] P. Shakkthivel and S. M. Chen, “Simultaneous Determination of Ascorbic Acid and Dopamine in the Presence of Uric Acid on Ruthenium Oxide Modified Electrode,” Bio-sensors and Bio-electronics, Vol. 22, No. 8, 2006, pp. 1680-1687. doi:10.1016/j.bios.2006.07.026
[14] Y. X. Li and X. Q. Lin, “Simultaneous Electroanalysis of Dopamine, Ascorbic Acid and Uric Acid By Poly(Vinyl Alcohol) Covalently Modified Glassy Carbon Electrode,” Sensors and Actuators B: Chemical, Vol. 115, No. 1, 2006, pp. 134-139. doi:10.1016/j.snb.2005.08.022
[15] L. Q. Lin, J. H. Chen, H. Yao, Y. Z. Chen, Y. J. Zheng and X. H. Lin, “Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid at Poly(Evans Blue) Modified Glassy Carbon Electrode,” Bio-electrochemistry, Vol. 73, No. 1, 2008, pp. 11-17. doi:10.1016/j.bioelechem.2008.01.009
[16] H. R. Zare, N. Rajabzadeh, N. Nasirizadeh and M. M. Ardakani, “Voltammetric Studies of an Oracet Blue Modified Glassy Carbon Electrode and Its Application for the Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid,” Journal of Electroanalytical Chemistry, Vol. 589, No. 1, 2006, pp. 60-69. doi:10.1016/j.jelechem.2006.01.011
[17] X. H. Lin, Q. Zhuang, J. H. Chen, S. B. Zhang and Y. J. Zheng, “Electrocatalytic Property of Poly-Chro-Motrope 2B Modified Glassy Carbon Electrode on Dopamine and Its Application,” Sensors and Ac-tuators B: Chemical, Vol. 125, No. 1, 2007, pp. 240-245. doi:10.1016/j.snb.2007.02.010
[18] J. H. Chen, J. Zhang, X. H. Lin, H. Y. Wan and S. B. Zhang, “Electrocatalytic Oxidation and Determination of Dopamine in the Presence of Ascorbic Acid and Uric Acid at a Poly (4-(2-Pyridylazo)-Resorcinol) Modified Glassy Carbon Electrode,” Electroanalysis, Vol. 19, No. 5, 2007, pp. 612-619. doi:10.1002/elan.200603755
[19] H. Yao, Y. Y. Sun, X. H. Lin, Y. H. Tang and L. Y. Huang, “Electrochemical Characterization of Poly (Eriochrome Black T) Modified Glassy Carbon Electrode and Its Application to Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid,” Electrochimica Acta, Vol. 52, No. 20, 2007, pp. 6165-6171. doi:10.1016/j.electacta.2007.04.013
[20] A. A. Ensafi, M. Taei, T. Khayamian and A. Arabz-Adeh, “Highly Selective Determination of Ascorbic Acid, Do-pamine, and Uric Acid by Diffe-rential Pulse Volta-Mmetry Using Poly(Sulfonazo III) Modified Glassy Carbon Elec-trode,” Sensors and Actuators B: Chemical, Vol. 147, No. 1, 2010, pp. 213-221. doi:10.1016/j.snb.2010.02.048
[21] P. R. Roy, T. Okajima and T. Ohsaka, “Simultaneous Electroanalysis of Dopamine and Ascorbic Acid Using Poly (N, N-Dimethylaniline)-Modified Electrodes,” Bio-electrochemistry, Vol. 59, No. 1-2, 2003, pp. 11-19. doi:10.1016/S1567-5394(02)00156-1
[22] V. S. Vasantha and S. M. Chen, “Electrocatalysis and Simultaneous Detection of Dopamine and Ascorbic Acid Using Poly(3,4-Ethylenedioxy) Thiophene Film Modified Electrodes,” Journal of Electroana-lytical Chemistry, Vol. 592, No. 1, 2006, pp. 77-87. doi:10.1016/j.jelechem.2006.04.026
[23] U. Yogeswaran and S. M. Chen, “Multi-Walled Carbon Nanotubes with Poly(Methylene Blue) Composite Film for the Enhancement and Separation of Electroanalytical Responses of Catecholamine and Ascorbic Acid,” Sensors and Actuators B: Chemical, Vol. 130, No. 2, 2008, pp. 739-749. doi:10.1016/j.snb.2007.10.040
[24] A. Balamurugan and S. M. Chen, “Poly (3,4-Ethyl- enedioxythio-phene-co-(5-amino-2-naphthalenesulfonic acid)) (PE-DOT-PANS) Film Modified Glassy Carbon Electrode for Se-lective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid,” Analytica Chimica Acta, Vol. 596, No. 1, 2007, pp. 92-98. doi:10.1016/j.aca.2007.05.064
[25] P. Kalimuthu and S. A. John, “Electropolymerized Film of Functionalized Thiadiazole on Glassy Carbon Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid,” Bioelectro-chemistry, Vol. 77, No. 1, 2009, pp. 13-18. doi:10.1016/j.bioelechem.2009.04.010
[26] L. Han and X. L. Zhang, “Simultaneous Voltammetry Determination of Dihy-droxybenzene Isomers by Nanogold Modified Electrode,” Electroanalysis, Vol. 21, No. 2, 2009, pp. 124-129. doi:10.1002/elan.200804403
[27] B. Serra, S. Jiménez, M. L. Mena, A. J. Reviejo and J. M. Pingarrón, “Composite Electro-chemical Biosensors: A Comparison of Three Different Electrode Matrices for the Construction of Amperometric Tyrosinase Biosensors,” Biosensors and Bioelectronics, Vol. 17, No. 3, 2002, pp. 217-226. doi:10.1016/S0956-5663(01)00269-X
[28] P. Santhosh, A. Gopalan and K. P. Lee, “Gold Nanoparticles Dispersed Polyaniline Grafted Multiwall Carbon Nanotubes as Newer Elec-trocatalysts; Preparation and Performances for Methanol Oxidation,” Journal of Ca- talysis, Vol. 238, No. 1, 2006, pp. 177-185. doi:10.1016/j.jcat.2005.12.014
[29] L. Zhang and X. Q. Lin, “Electrochemical Behavior of a Covalently Modified Glassy Carbon Electrode with As-partic Acid and Its Use for Vol-tammetric Differentiation of Dopamine and Ascorbic Acid,” Analytical and Bio-analytical Chemistry, Vol. 382, No. 7, 2005, pp. 1669- 1677. doi:10.1007/s00216-005-3318-x
[30] U. Yogeswaran and S. M. Chen, “Separation and Con- centration Effect of f-MWCNTs on Electrocatalytic Responses of As-corbic Acid, Dopamine and Uric Acid at f-MWCNTs Incorporated with Poly (Neutral Red) Composite Films,” Electrochimica Acta, Vol. 52, No. 19, 2007, pp. 5985-5996. doi:10.1016/j.electacta.2007.03.047
[31] A. J. Downard and A. B. Mohamed, “Suppression of Protein Adsorption at Glassy Carbon Electrodes Cova- lently Modified with Tetraethylene Glycol Diamine,” Electroanalysis, Vol. 11, No. 6, 1999, pp. 418-423. doi:10.1002/(SICI)1521-4109(199905)11:6<418::AID-ELAN418>3.0.CO;2-B
[32] R. S. Deinhammer, H. Mankit, J. W. An-deregg and M. D. Porter, “Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes,” Langmuir, Vol. 10, No. 4, 1994, pp. 1306-1313. doi:10.1021/la00016a054
[33] G. Zhao, J. J. Xu and H. Y. Chen, “Fabrication, Characterization of Fe3O4 Multilayer Film and Its Application in Promoting Direct Electron Transfer of Hemoglobin,” Electrochemistry Communication, Vol. 8, No. 1, 2006, pp. 148-154. doi:10.1016/j.elecom.2005.11.001
[34] H. X. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu and Q. K. Zhuang, “Investigation of the Elec-trochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode,” Analytical Chemistry, Vol. 73, No. 5, 2001, pp. 915-920. doi:10.1021/ac000967l
[35] F. Malem and D. Mandler, “Self-Assembled Monolayers in Electroanalytical Chemistry: Application of. Omegamer-capto Carboxylic Acid Monolayers for the Electrochemical Detection of Dopamine in the Presence of a High Concentration of Ascorbic Acid,” Analytical Chemistry, Vol. 65, No. 1, 1993, pp. 37-41. doi:10.1021/ac00049a009
[36] L. Zhang and X. Q. Lin, “Cova-lent Modification of Glassy Carbon Electrode with Glutamic Acid for Simultaneous Determination of Uric Acid and Ascorbic Acid,” Analyst, Vol. 126, No. 3, 2001, pp. 367-370. doi:10.1039/b009415n

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.